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New Features in This Manual

A number of changes have been made to accomodate the differences between IRIX
and Linux implementation of MPI.
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About This Manual

This publication documents the SGI implementation of the Message Passing Interface
(MPI) supported on Linux systems and SGI MIPS based systems running IRIX release
6.5 or later.

MPI consists of a library, a profiling library, and commands that support the MPI
interface. MPI is a component of the SGI Message Passing Toolkit (MPT).

MPT is a software package that supports parallel programming on large systems and
clusters of computer systems through a technique known as message passing. IRIX
systems running MPI applications must also be running Array Services software
version 3.1 or later.

Related Publications and Other Sources
Material about MPI is available from a variety of sources. Some of these, particularly
webpages, include pointers to other resources. Following is a grouped list of these
sources.

The MPI standard:

• As a technical report: University of Tennessee report (reference [24] from Using
MPI: Portable Parallel Programming with the Message-Passing Interface, by Gropp,
Lusk, and Skjellum).

• As online PostScript or hypertext on the Web:

http://www.mpi-forum.org/

• As a journal article in the International Journal of Supercomputer Applications, volume
8, number 3/4, 1994. See also International Journal of Supercomputer Applications,
volume 12, number 1/4, pages 1 to 299, 1998.

Book: Using MPI: Portable Parallel Programming with the Message-Passing Interface, by
Gropp, Lusk, and Skjellum, publication TPD–0011.

Newsgroup: comp.parallel.mpi

SGI manual: SpeedShop User’s Guide
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About This Manual

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[ ] Brackets enclose optional portions of a command or
directive line.
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... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
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Chapter 1

Introduction

Message Passing Toolkit (MPT) for Linux and IRIX is a software package that
supports interprocess data exchange for applications that use concurrent, cooperating
processes on a single host or on multiple hosts. Data exchange is done through
message passing, which is the use of library calls to request data delivery from one
process to another or between groups of processes.

The MPT package contains the following components and the appropriate
accompanying documentation:

• Message Passing Interface (MPI). MPI is a standard specification for a message
passing interface, allowing portable message passing programs in Fortran and C
languages.

• Logically shared, distributed memory (SHMEM) data-passing routines. SHMEM is
a distributed, shared memory (SHMEM) library that consists of a set of
SGI-proprietary message-passing library routines. These routines help distributed
applications efficiently share data between cooperating processes. The model is
based on multiple processes having separate address spaces, with the
SHMEM-provided ability for one process to access data in another process’
address space without interrupting the other process. SHMEM is not a standard
like MPI, so SHMEM applications developed on other vendors’ hardware might or
might not work with the SGI SHMEM implementation.

This chapter provides an overview of the MPI software that is included in the toolkit.
This overview includes a description of the MPI-2 Standard features that are
provided, a description of the basic components of MPI, and a description of the basic
features of MPI. Subsequent chapters address the following topics:

• Chapter 2, "Getting Started", page 5

• Chapter 3, "Programming with SGI MPI", page 13

• Chapter 4, "Debugging MPI Applications", page 25

• Chapter 5, "Profiling MPI Applications", page 29

• Chapter 6, "Run-time Tuning", page 37

• Chapter 7, "Troubleshooting and Frequently Asked Questions", page 49
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1: Introduction

MPI Overview
MPI was created by the Message Passing Interface Forum (MPIF). MPIF is not
sanctioned or supported by any official standards organization. Its goal was to
develop a widely used standard for writing message passing programs.

SGI supports implementations of MPI that are released as part of the Message Passing
Toolkit on Linux systems and IRIX systems. The MPI Standard is documented online
at the following address:

http://www.mcs.anl.gov/mpi

MPI-2 Standard Compliance

The SGI MPI implementation is compliant with the 1.0, 1.1, and 1.2 versions of the
MPI Standard specification. In addition, the following MPI-2 features (with section
numbers from the MPI-2 Standard specification) are provided:

Feature Section

MPI-2 parallel I/O 9

A subset of MPI-2 one-sided
communication routines (put/get
model)

6

MPI spawn functionality 5.3

MPI_Alloc_mem/MPI_Free_mem 4.11

Transfer of handles 4.12.4

MPI-2 replacements for deprecated MPI-1
functions

4.14.1

Support for thread safety (IRIX only) 8.7

Extended language bindings for C++ and
partial Fortran 90 support

10.1, 10.2.4

Generalized requests 4.5.2

New attribute caching functions 8.8
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MPI Components

The MPI library is provided as a dynamic shared object (DSO) (a file with a name
that ends in .so). The basic components that are necessary for using MPI are the
libmpi.so library, the include files, and the command.

Profiling support is included in the libmpi.so libraries. Profiling support replaces
all MPI_Xxx prototypes and function names with PMPI_Xxx entry points.

MPI Features

The SGI MPI implementation offers a number of significant features that make it the
preferred implementation to use on SGI hardware:

• Memory placement within IRIX ccNUMA hosts is handled automatically by the
library

• Data transfer optimizations for NUMAlink, including single-copy data transfer

• Use of hardware fetch operations (fetchops), where available, for fast
synchronization and lower latency for short messages

• Optimized MPI-2 one-sided commands

• Interoperability with SHMEM (LIBSMA)

• High performance communication support for partitioned systems via XPMEM

• Thread safety on IRIX systems

007–3687–010 3





Chapter 2

Getting Started

This chapter provides procedures for building MPI applications on Linux and IRIX
systems. It provides examples of the use of the mpirun(1) command to launch MPI
jobs. It also provides procedures for building and running SHMEM applications.

Compiling and Linking IRIX MPI Programs
To use the 64-bit MPI library, choose one of the following commands, specifying the
mpi library using the -l compiler option on the compiler command line::

% CC -64 compute.C -lmpi++ -lmpi

% cc -64 compute.c -lmpi

% f77 -LANG:recursive=on -64 compute.f -lmpi
% f90 -LANG:recursive=on -64 compute.f -lmpi

To use the 32-bit MPI library, choose one of the following commands:

% CC -n32 compute.C -lmpi++ -lmpi
% cc -n32 compute.c -lmpi

% f77 -n32 compute.f -lmpi

% f90 -n32 compute.f -lmpi

If the Fortran 90 compiler version 7.2.1 or later is installed, for compile-time checking
of MPI subroutine calls, you can add the -auto_use option as follows:

% f90 -auto_use mpi_interface -LANG:recursive=on -64 compute.f -lmpi

% f90 -auto_use mpi_interface -n32 compute.f -lmpi

If your program does not perform MPI-2 one-sided operations like put and get to a
local Fortran variable or array with the SAVE attribute, you can omit the
-LANG:recursive=on option. Note that MPI-2 one-sided communication is not
supported for the 32-bit MPI library, and so -LANG:recursive=on is not needed
with -n32.

If the MPI application also uses OpenMP directives, you should link the application
with the libraries listed in the following order:

% CC -mp -64 compute.C -lmp -lmpi++ -lmpi

% cc -mp -64 compute.c -lmp -lmpi
% f77 -mp -64 compute.f -lmp -lmpi
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% f90 -mp -64 compute.f -lmp -lmpi

This order is not required, but under certain cases this order leads to better
application performance. For further information about using hybrid applications, see
"Tuning MPI/OpenMP Hybrid Codes", page 44.

If the MPI application uses the SGI pthreads library, use the following library order
when linking the application:

% CC -64 compute.C -lmpi++ -lmpi -lpthread

% cc -64 compute.c -lmpi -lpthread

This order is necessary because the SGI MPI library contains internal initialization
routines that might be required to be run prior to other initialization routines. The
SGI libpthread.so library has one of these initialization routines that can conflict
with the MPI routines. Use the linkage order shown above to ensure that they do not
conflict.

Compiling and Linking Linux MPI Programs
The default locations for the include files, the .so files, the .a files, and the mpirun
command are pulled in automatically. Once the MPT RPM is installed as default, the
commands to build an MPI-based application using the .so files are as follows:

• To use the 64-bit MPI library on Linux systems, choose one of the following
commands:

% g++ -o myprog myprog.C -lmpi++ -lmpi

% gcc -o myprog myprog.c -lmpi
% g77 -I/usr/include -o myprog myprog.f -lmpi

• To compile programs on Linux with the Intel compiler, use the following
commands:

% efc -o myprog myprog.f -lmpi (Fortran)
% ecc -o myprog myprog.c -lmpi (C)

For Linux the libmpi++.so library is not binary compatible with code generated
by g++ 3.0 compilers. For this reason an additional library is supported for g++
3.0 users as well as Intel C++ 8.0 users. The library is libg++3mpi++.so and can
be linked in by using -lg++3mpi++ instead of -lmpi++.
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Note: You must use the Intel compiler to compile Fortran 90 programs on Linux
systems.

• To compile Fortran programs on Linux with the Intel compiler, enabling
compile-time checking of MPI subroutine calls, insert a USE MPI statement near
the beginning of each subprogram to be checked and use the following command:

% efc -I/usr/include -o myprog myprog.f -lmpi

Note: The above command line assumes a default installation; if you have
installed MPT into a non-default location, replace /usr/include with the name
of the relocated directory.

Note: At the time this manual was written, the MPI.mod file included in MPT 1.9
was unusable by Intel efc compiler versions 8 and beyond. The supplied MPI.mod
file is generated with efc version 7.1, build 20030605 and is accepted only by efc
version 7 compilers.

Using mpirun to Launch an MPI Application
You must use the mpirun command to start MPI applications. For complete
specification of the command line syntax, see the mpirun(1) man page. This section
summarizes the procedures for launching an MPI application.

Launching a Single Program on the Local Host

To run an application on the local host, enter the mpirun command with the -np
argument. Your entry must include the number of processes to run and the name of
the MPI executable file.

The following example starts three instances of the mtest application, which is
passed an argument list (arguments are optional):

% mpirun -np 3 mtest 1000 "arg2"

007–3687–010 7
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Launching a Multiple Program, Multiple Data (MPMD) Application on the Local Host

You are not required to use a different host in each entry that you specify on the
mpirun command. You can launch a job that has multiple executable files on the
same host. In the following example, one copy of prog1 and five copies of prog2 are
run on the local host. Both executable files use shared memory.

% mpirun -np 1 prog1 : 5 prog2

Note that for IRIX systems running MPMD applications, the executable files must be
compiled as either 32-bit or 64-bit applications.

Launching a Distributed Application

You can use the mpirun command to launch a program that consists of any number
of executable files and processes and you can distribute the program to any number
of hosts. A host is usually a single machine, or it can be any accessible computer
running Array Services software. For available nodes on systems running Array
Services software, see the /usr/lib/array/arrayd.conf file.

You can list multiple entries on the mpirun command line. Each entry contains an
MPI executable file and a combination of hosts and process counts for running it.
This gives you the ability to start different executable files on the same or different
hosts as part of the same MPI application.

The examples in this section show various ways to launch an application that consists
of multiple MPI executable files on multiple hosts.

The following example runs ten instances of the a.out file on host_a:

% mpirun host_a -np 10 a.out

When specifying multiple hosts, you can omit the -np option and list the number of
processes directly. The following example launches ten instances of fred on three
hosts. fred has two input arguments.

% mpirun host_a, host_b, host_c 10 fred arg1 arg2

The following example launches an MPI application on different hosts with different
numbers of processes and executable files:

% mpirun host_a 6 a.out : host_b 26 b.out
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Using MPI-2 Spawn Functions to Launch an Application

To use the MPI-2 process creation functions MPI_Comm_spawn or
MPI_Comm_spawn_multiple, you must specify the universe size by specifying the
-up option on the mpirun command line. For example, the following command
starts three instances of the mtest MPI application in a universe of size 10:

% mpirun -up 10 -np 3 mtest

By using one of the above MPI spawn functions, mtest can start up to seven more
MPI processes.

When running MPI applications on partitioned Altix systems which use the MPI-2
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions, it may be necessary to
explicitly specify the partitions on which additional MPI processes may be launched.
See the section "Launching Spawn Capable Jobs on Altix Partitioned Systems" on the
mpirun(1) man page.

Compiling and Running SHMEM Applications on IRIX Systems
To compile a 64-bit SHMEM application on IRIX systems, choose one of the following
commands:

% CC -64 compute.C -lsma

% cc -64 compute.c -lsma

% f77 -LANG:recursive=on -64 compute.f -lsma

% f90 -LANG:recursive=on -64 compute.f -lsma

To use the 32-bit SHMEM library, choose one of the following commands:

% CC -n32 compute.C -lsma

% cc -n32 compute.c -lsma
% f77 -LANG:recursive=on -n32 compute.f -lsma

% f90 -LANG:recursive=on -n32 compute.f -lsma

Note: It is generally not recommended to compile SHMEM applications as 32-bit
executable files.
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If the Fortran 90 compiler version 7.2.1 or later is installed, to get compile-time
checking of MPI subroutine calls, you can add the -auto_use option as follows:

% f90 -auto_use shmem_interface -LANG:recursive=on -64 compute_shmem.f -lsma

% f90 -auto_use shmem_interface -LANG:recursive=on -n32 compute_shmem.f -lsma

If your program does not perform SHMEM one-sided operations like put and get to
a local Fortran variable or array with the SAVE attribute, you can omit the
-LANG:recursive=on option. This option prevents the compiler from holding these
variables in registers across a subroutine call.

You do not need to use mpirun to launch SHMEM applications unless the MPI
library was also linked with the application. Use the NPES environment variable to
specify the number of SHMEM processes to use when running a SHMEM executable
file. For example, the following command runs shmem_app on 32 processes:

% setenv NPES 32

% ./shmem_app

If MPI is also used in the executable file, you must use mpirun to launch the
application, as if it were an MPI application.

Compiling and Running SHMEM Applications on Linux Systems
To use the 64-bit SHMEM library on Linux systems, choose one of the following
commands:

% g++ compute.C -lsma

% gcc compute.c -lsma
% g77 -I/usr/include compute.f -lsma

To compile SHMEM programs on Linux systems with the Intel compiler, use the
following commands:

% ecc compute.C -lsma

% ecc compute.c -lsma

% efc compute.f -lsma

Unlike IRIX systems, with Linux systems you must use mpirun to launch SHMEM
applications. The NPES variable has no effect on SHMEM programs running on
Linux. To request the desired number of processes to launch, you must set the -np
option on mpirun.
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On Linux, the SHMEM programming model supports single host SHMEM
applications, as well as SHMEM applications that span multiple partitions. To launch
a SHMEM application on more than one partition, use the multiple host mpirun
syntax, such as the following:

% mpirun hostA, hostB -np 16 ./shmem_app

For more information, see the intro_shmem(3) man page.
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Chapter 3

Programming with SGI MPI

Portability is one of the main advantages MPI has over vendor-specific message
passing software. Nonetheless, the MPI Standard offers sufficient flexibility for
general variations in vendor implementations. In addition, there are often vendor
specific programming recommendations for optimal use of the MPI library. This
chapter addresses topics that are of interest to those developing or porting MPI
applications to SGI systems.

Job Termination and Error Handling
This section describes the behavior of the SGI MPI implementation upon normal job
termination. Error handling and characteristics of abnormal job termination are also
described.

MPI_Abort

In the SGI MPI implementation, a call to MPI_Abort causes the termination of the
entire MPI job, regardless of the communicator argument used. The error code value
is returned as the exit status of the mpirun command.

Error Handling

Section 7.2 of the MPI Standard describes MPI error handling. Although almost all
MPI functions return an error status, an error handler is invoked before returning
from the function. If the function has an associated communicator, the error handler
associated with that communicator is invoked. Otherwise, the error handler
associated with MPI_COMM_WORLD is invoked.

The SGI MPI implementation provides the following predefined error handlers:

• MPI_ERRORS_ARE_FATAL. The handler, when called, causes the program to abort
on all executing processes. This has the same effect as if MPI_Abort were called
by the process that invoked the handler.

• MPI_ERRORS_RETURN. The handler has no effect.
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By default, the MPI_ERRORS_ARE_FATAL error handler is associated with
MPI_COMM_WORLD and any communicators derived from it. Hence, to handle the
error statuses returned from MPI calls, it is necessary to associate either the
MPI_ERRORS_RETURN handler or another user defined handler with
MPI_COMM_WORLD near the beginning of the application.

MPI_Finalize and Connect Processes

In the SGI implementation of MPI, all pending communications involving an MPI
process must be complete before the process calls MPI_Finalize. If there are any
pending send or recv requests that are unmatched or not completed, the application
will hang in MPI_Finalize. For more details, see section 7.5 of the MPI Standard.

If the application uses the MPI-2 spawn functionality described in Chapter 5 of the
MPI-2 Standard, there are additional considerations. In the SGI implementation, all
MPI processes are connected. Section 5.5.4 of the MPI-2 Standard defines what is
meant by connected processes. When the MPI-2 spawn functionality is used,
MPI_Finalize is collective over all connected processes. Thus all MPI processes,
both launched on the command line, or subsequently spawned, synchronize in
MPI_Finalize.

Signals
In the SGI implementation, MPI processes are UNIX processes. As such, the general
rule regarding handling of signals applies as it would to ordinary UNIX processes.

In addition, the SIGURG and SIGUSR1 signals can be propagated from the mpirun
process to the other processes in the MPI job, whether they belong to the same process
group on a single host, or are running across multiple hosts in a cluster. To make use
of this feature, the MPI program must have a signal handler that catches SIGURG or
SIGUSR1. When the SIGURG or SIGUSR1 signals are sent to the mpirun process ID,
the mpirun process catches the signal and propagates it to all MPI processes.

There are additional concerns when using signals with multithreaded MPI
applications. These are discussed in "Thread Safety", page 16.
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Buffering
Most MPI implementations use buffering for overall performance reasons and some
programs depend on it. However, you should not assume that there is any message
buffering between processes because the MPI Standard does not mandate a buffering
strategy. Table 3-1, page 15 illustrates a simple sequence of MPI operations that cannot
work unless messages are buffered. If sent messages were not buffered, each process
would hang in the initial call, waiting for an MPI_Recv call to take the message.

Because most MPI implementations do buffer messages to some degree, a program
like this does not usually hang. The MPI_Send calls return after putting the messages
into buffer space, and the MPI_Recv calls get the messages. Nevertheless, program
logic like this is not valid by the MPI Standard. Programs that require this sequence
of MPI calls should employ one of the buffer MPI send calls, MPI_Bsend or
MPI_Ibsend.

Table 3-1 Outline of Improper Dependence on Buffering

Process 1 Process 2

MPI_Send(2,....) MPI_Send(1,....)

MPI_Recv(2,....) MPI_Recv(1,....)

By default, the SGI implementation of MPI uses buffering under most circumstances.
Short messages (64 or fewer bytes) are always buffered. Longer messages are also
buffered, although under certain circumstances buffering can be avoided. For
performance reasons, it is sometimes desirable to avoid buffering. For further
information on unbuffered message delivery, see "Programming Optimizations", page
20.

Multithreaded Programming
SGI MPI supports hybrid programming models, in which MPI is used to handle one
level of parallelism in an application, while POSIX threads or OpenMP processes are
used to handle another level. When mixing OpenMP with MPI, for performance
reasons it is better to consider invoking MPI functions only outside parallel regions,
or only from within master regions. When used in this manner, it is not necessary to
initialize MPI for thread safety. You can use MPI_Init to initialize MPI. However, to
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safely invoke MPI functions from any OpenMP process or when using Posix threads,
MPI must be initialized with MPI_Init_thread.

Note: Multithreaded programming models are currently supported on IRIX systems
only.

There are further considerations when using MPI with threads. These are described in
the following sections.

Thread Safety

The SGI implementation of MPI on IRIX systems assumes the use of POSIX threads or
processes (see the pthread_create or the OpenMP (sprocs) commands,
respectively). Other threading packages might or might not work with this MPI
implementation.

Each thread associated with a process can issue MPI calls. However, the rank ID in
send or receive calls identifies the process, not the thread. A thread behaves on
behalf of the MPI process. Therefore, any thread associated with a process can receive
a message sent to that process.

It is the user’s responsibility to prevent races when threads within the same
application post conflicting communication calls. By using distinct communicators for
each thread, the user can ensure that two threads in the same process do not issue
conflicting communication calls.

All MPI calls on IRIX 6.5 or later systems are thread-safe. This means that two
concurrently running threads can make MPI calls and the outcome will be as if the
calls executed in some order, even if their execution is interleaved.

If you block an MPI call, only the calling thread is blocked, allowing another thread
to execute, if available. The calling thread is blocked until the event on which it waits
occurs. Once the blocked communication is enabled and can proceed, the call
completes and the thread is marked runnable within a finite time. A blocked thread
does not prevent progress of other runnable threads on the same process, and does
not prevent them from executing MPI calls.

16 007–3687–010



Message Passing Toolkit: MPI Programmer’s Manual

Initialization

To initialize MPI for a program that will run in a multithreaded environment, the user
must call the MPI-2 function, MPI_Init_thread(). In addition to initializing MPI
in the same way as MPI_Init does, MPI_Init_thread() also initializes the thread
environment.

You can create threads before MPI is initialized, but before MPI_Init_thread() is
called, the only MPI call these threads can execute is MPI_Initialize.

Only one thread can call MPI_Init_thread(). This thread becomes the main
thread. Because only one thread calls MPI_Init_thread(), threads must be able to
inherit initialization. With the SGI implementation of thread-safe MPI, for proper MPI
initialization of the thread environment, a thread library must be loaded before the
call to MPI_Init_thread(). This means that dlopen cannot be used to open a
thread library after the call to MPI_Init_thread().

Query Functions

The MPI-2 query function, MPI_Query_thread(), is available to query the current
level of thread support. The MPI-2 function, MPI_Is_thread_main(), can be used
to determine whether a thread is the main thread. The main thread is the thread that
called MPI_Init_thread().

Requests

More than one thread cannot work on the same request. A program in which two
threads block, waiting on the same request, is erroneous. Similarly, the same request
cannot appear in the array of requests of two concurrent MPI_Wait{any|some|all}
calls. In MPI, a request can be completed only once. Any combination of wait or
test that violates this rule is erroneous.

Probes

A receive call that uses source and tag values returned by a preceding call to
MPI_Probe or MPI_Iprobe receives the message matched by the probe call only if
there was no other matching receive call after the probe and before that receive. In a
multithreaded environment, it is the user’s responsibility to use suitable mutual
exclusion logic to enforce this condition. You can enforce this condition by making
sure that each communicator is used by only one thread on each process.
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Collectives

Matching collective calls on a communicator, window, or file handle is performed
according to the order in which the calls are issued in each process. If concurrent
threads issue such calls on the communicator, window, or file handle, it is the user’s
responsibility to use interthread synchronization to ensure that the calls are correctly
ordered.

Exception Handlers

An exception handler does not necessarily execute in the context of the thread that
made the exception-raising MPI call. The exception handler can be executed by a
thread that is distinct from the thread that will return the error code.

Cancellation

If a thread that executes an MPI call is canceled by another thread, or if a thread
catches a signal while executing an MPI call, the outcome is undefined. When not
executing MPI calls, a thread associated with an MPI process can terminate and can
catch signals or be canceled by another thread.

Internal Statistics

The SGI internal statistics diagnostics are not thread-safe. MPI statistics are discussed
in Chapter 5, "Profiling MPI Applications", page 29.

Finalization

The call to MPI_Finalize occurs on the same thread that initialized MPI (also
known as the main thread). It is the user’s responsibility to ensure that the call occurs
only after all of the processes’ threads have completed their MPI calls and have no
pending communications or I/O operations.
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Interoperability with SHMEM
You can mix SHMEM and MPI message passing in the same program. The
application must be linked with both the SHMEM and MPI libraries. Start with an
MPI program that calls MPI_Init and MPI_Finalize.

When you add SHMEM calls, the PE numbers are equal to the MPI rank numbers in
MPI_COMM_WORLD. Do not call start_pes() in a mixed MPI and SHMEM program.

When running the application across a cluster, not all MPI processes might be
accessible when using SHMEM functions. You can use the shmem_pe_accessible
function to determine whether a SHMEM call can be used to access data residing in
another MPI process. Because SHMEM functions only with respect to
MPI_COMM_WORLD, these functions cannot be used to exchange data between MPI
processes that are connected via MPI intercommunicators returned from MPI-2 spawn
related functions.

SHMEM functions should not be considered thread safe.

For more information about SHMEM, see the intro_shmem man page.

Miscellaneous Features of SGI MPI
This section describes other characteristics of the SGI MPI implementation that might
be of interest to application developers.

stdin/stdout/stderr

In this implementation, stdin is enabled for only those MPI processes with rank 0 in
the first MPI_COMM_WORLD (which does not need to be located on the same host as
mpirun). stdout and stderr results are enabled for all MPI processes in the job,
whether launched via mpirun, or via one of the MPI-2 spawn functions.

MPI_Get_processor_name

In this release of SGI MPI, the MPI_Get_processor_name function returns the
Internet host name of the computer on which the MPI process invoking this
subroutine is running.
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Programming Optimizations
This section describes ways in which the MPI application developer can best make
use of optimized features of SGI’s MPI implementation. Following recommendations
in this section might require modifications to your MPI application.

Using MPI Point-to-Point Communication Routines

MPI provides for a number of different routines for point-to-point communication.
The most efficient ones in terms of latency and bandwidth are the blocking and
nonblocking send/receive functions (MPI_Send, MPI_Isend, MPI_Recv, and
MPI_Irecv).

Unless required for application semantics, the synchronous send calls (MPI_Ssend
and MPI_Issend) should be avoided. The buffered send calls (MPI_Bsend and
MPI_Ibsend) should also usually be avoided as these double the amount of memory
copying on the sender side. The ready send routines (MPI_Rsend and MPI_Irsend)
are treated as standard MPI_Send and MPI_Isend in this implementation. Persistent
requests do not offer any performance advantage over standard requests in this
implementation.

Using MPI Collective Communication Routines

The MPI collective calls are frequently layered on top of the point-to-point primitive
calls. For small process counts, this can be reasonably effective. However, for higher
process counts (32 processes or more) or for clusters, this approach can become less
efficient. For this reason, a number of the MPI library collective operations have been
optimized to use more complex algorithms.

Some collectives have been optimized for use with clusters. In these cases, steps are
taken to reduce the number of messages using the relatively slower interconnect
between hosts.

Two of the collective operations have been optimized for use with shared memory.
The barrier operation has also been optimized to use hardware fetch operations
(fetchops) on platforms on which these are available. The MPI_Alltoall routines
also use special techniques to avoid message buffering when using shared memory.
For more details, see "Avoiding Message Buffering — Single Copy Methods", page 22.
Table 3-2, page 21, lists the MPI collective routines optimized in this implementation.
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Table 3-2 Optimized MPI Collectives

Routine Optimized for Clusters
Optimized for Shared

Memory

MPI_Alltoall Yes Yes

MPI_Barrier Yes Yes

MPI_Allreduce Yes No

MPI_Bcast Yes No

Note: On Altix systems these collectives are optimized across partitions by using the
XPMEM driver which is explained in Chapter 6, "Run-time Tuning". These collectives
(except MPI_Barrier) will try to use single-copy by default for large transfers unless
MPI_DEFAULT_SINGLE_COPY_OFF is specified.

Using MPI_Pack/MPI_Unpack

While MPI_Pack and MPI_Unpack are useful for porting PVM codes to MPI, they
essentially double the amount of data to be copied by both the sender and receiver. It
is generally best to avoid the use of these functions by either restructuring your data
or using derived data types. Note, however, that use of derived data types may lead
to decreased performance in certain cases.

Avoiding Derived Data Types

In general, you should avoid derived data types when possible. In the SGI
implementation, use of derived data types does not generally lead to performance
gains. Use of derived data types might disable certain types of optimizations (for
example, unbuffered or single copy data transfer).

Avoiding Wild Cards

The use of wild cards (MPI_ANY_SOURCE, MPI_ANY_TAG) involves searching
multiple queues for messages. While this is not significant for small process counts,
for large process counts the cost increases quickly.
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Avoiding Message Buffering — Single Copy Methods

One of the most significant optimizations for bandwidth sensitive applications in the
MPI library is single copy optimization, avoiding the use of shared memory buffers.
Table 3-3, page 22, indicates the relative improvement in bandwidth for a simple
ping/pong test using various message sizes. However, as discussed in "Buffering",
page 15, some incorrectly coded applications might hang because of buffering
assumptions. For this reason, this optimization is not enabled by default for
MPI_send, but can be turned on by the user at run time by using the
MPI_BUFFER_MAX environment variable. The following steps can be taken by the
application developer to increase the opportunities for use of this unbuffered pathway:

• The MPI application should be built as a 64–bit executable file, or linked explicitly
with the SHMEM library.

• The MPI data type on the send side must be a contiguous type.

• The sender and receiver MPI processes must reside on the same host.

• The sender data must be globally accessible. Globally accessible memory includes
common block or static memory. Depending on the run-time environment,
memory allocated via the Fortran 90 allocate statement might also be globally
accessible. You can also access globally accessible memory by using the
MPI_Alloc_mem function. In addition, the SHMEM symmetric heap accessed by
using the shpalloc or shmalloc functions is also globally accessible.

Certain run-time environment variables must be set to enable the unbuffered, single
copy method. In addition, on certain platforms, hardware is available to facilitate the
single copy method without requiring a message buffer to be globally accessible. For
more details on how to set the run-time environment, see "Avoiding Message
Buffering – Enabling Single Copy", page 39.

Table 3-3 MPI_Send/MPI_Recv Bandwidth Speedup for Unbuffered vs. Buffered
Methods

Message Length O2000 O3000

8KB 1.2 1.1

1MB 1.2 1.2

10MB 1.8 1.6
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Managing Memory Placement

Many multiprocessor SGI systems have a ccNUMA memory architecture. For single
process and small multiprocess applications, this architecture behaves similarly to flat
memory architectures. For more highly parallel applications, memory placement
becomes important. MPI takes placement into consideration when laying out shared
memory data structures, and the individual MPI processes’ address spaces. In
general, it is not recommended that the application programmer try to manage
memory placement explicitly. There are a number of means to control the placement
of the application at run time, however. For more information, see Chapter 6,
"Run-time Tuning", page 37.

Additional Programming Model Considerations
A number of additional programming options might be worth consideration when
developing MPI applications for SGI systems. For example, SHMEM can provide a
means to improve the performance of latency-sensitive sections of an application.
Usually, this requires replacing MPI send/recv calls with shmem_put/shmem_get
and shmem_barrier calls. SHMEM can deliver significantly lower latencies for short
messages than traditional MPI calls. As an alternative to shmem_get/shmem_put
calls, you might consider the MPI-2 MPI_Put/ MPI_Get functions. These provide
almost the same performance as the SHMEM calls, while providing a greater degree
of portability.

Alternately, you might consider exploiting the shared memory architecture of SGI
systems by handling one or more levels of parallelism with OpenMP, with the coarser
grained levels of parallelism being handled by MPI. If you plan to call MPI in a
manner requiring thread safety, see "Thread Safety", page 16. Also, there are special
ccNUMA placement considerations to be aware of when running hybrid
MPI/OpenMP applications. For further information, see Chapter 6, "Run-time
Tuning", page 37.
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Debugging MPI Applications

Debugging MPI applications can be more challenging than debugging sequential
applications. This chapter presents methods for debugging MPI applications.

MPI Routine Argument Checking
By default, the SGI MPI implementation does not check the arguments to some
performance-critical MPI routines such as most of the point-to-point and collective
communication routines. You can force MPI to always check the input arguments to
MPI functions by setting the MPI_CHECK_ARGS environment variable. However,
setting this variable might result in some degradation in application performance, so
it is not recommended that it be set except when debugging.

Using the ProDevTM WorkShop Debugger with MPI Programs

Note: The ProDev WorkShop debugger (also known as CVD) is available on IRIX
systems only.

Recent versions of the ProDev WorkShop debugger work well with MPI jobs running
within a single host. You can use Debugger to debug MPI applications that make use
of MPI-2 spawn functions. To use the Debugger, perform the following steps:

Procedure 4-1 Steps for Using the Debugger

1. Use the following command to bring up the Debugger:

% cvd /usr/bin/mpirun

2. When the Debugger comes, up click on the Admin menu and select Multiprocess
View.

3. When Multiprocess View appears, click on the Config menu, then the
Preferences menu.

4. When the Preferences menu appears, check the first two unchecked boxes and
click on OK. So that you do not need to set these menus the next time you bring
up the Debugger, you can click on the Save button.
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5. In the Debugger command window (bottom of the main window), enter the
following commands:

cvd> set $pendingtraps=true

cvd> stop pgrp all in MPI_SGI_init

(You can also use a function in your a.out) file.

6. In the command window (the top of the main window), enter the mpirun
command with arguments, as in the following example:

/usr/bin/mpirun -np 2 a.out

Then click on the Run button.

7. Watch the Multiprocess View window as it forks processes. Eventually, it stops
in MPI_SGI_init (or your function) in your program and the Debugger focuses
on it. If you compiled with the -g option, it shows the source.

8. If you did not compile with the -g option, you can execute a file command to
select a certain file and see the source, as in the following example:

file ep.f

For complete details about using the Debugger, see the ProDev WorkShop: Debugger
User’s Guide.

Setting Breakpoints

The pgrp attribute on the stop command (see Procedure 4-1, step 5, page 26 above)
indicates the setting of the breakpoint for any processes in the Multiprocess View
window (including ones that will be spawned as slaves). You can set breakpoints by
clicking just to the left of the line, but by default, they are for that particular process,
not all processes in the Multiprocess View window.

You can change the process to add pgrp by clicking on the Traps menu in the
Debugger and selecting both of the unchecked boxes. Note that when Group Trap
Default is set, the pgrp attribute is added and when Stop All Default is set, the all
attribute is added. The all attribute stops all processes in the Multiprocess View
window when any process hits this breakpoint.
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Finding Windows

To find various windows, use the Views menu. Call Stack and Trap Manager
windows are very useful. You can also type dbx commands in the Debugger
command window at the bottom of the main window.

Continuing and Stepping Processes

The buttons in the Multiprocess View window cause all processes to continue or
step. Typically, you will want to use these. The buttons in the Debugger main
window are for a single process, unless a button indicates All. You can set up the
viewing of line numbers from the Display menu.

Rerunning a Process

If you want to rerun the process, simply click on the Run button. To temporarily turn
off breakpoints, use the Traps menu in the Trap Manager window.

Using TotalView with MPI programs
The syntax for running SGI MPI with Etnus’ TotalView is as follows:

% totalview mpirun -a -np 4 a.out

Note that TotalView is not expected to operate with MPI processes started via the
MPI_Comm_spawn or MPI_Comm_spawn_multiple functions.

Using dbx and gdb with MPI programs
Because the dbx and gdb debuggers are designed for sequential, non-parallel
applications, they are generally not well suited for use in MPI program debugging
and development. However, the use of the MPI_SLAVE_DEBUG_ATTACH environment
variable makes these debuggers more usable.

If you set the MPI_SLAVE_DEBUG_ATTACH environment variable to a global rank
number, the MPI process sleeps briefly in startup while you use dbx or gdb to attach
to the process. A message is printed to the screen, telling you how to use dbx to
attach to the process.
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Similarly, if you want to debug the MPI daemon, setting
MPI_DAEMON_DEBUG_ATTACH sleeps the daemon briefly while you attach to it. Both
of these environment variables are available on IRIX and Linux.
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Profiling MPI Applications

This chapter describes the use of profiling tools to obtain performance information.
Compared to the performance analysis of sequential applications, characterizing the
performance of parallel applications can be challenging. Often it is most effective to
first focus on improving the performance of MPI applications at the single process
level.

Profiling tools such as SpeedShop can be effectively used to assess this performance
aspect of message passing applications. It may also be important to understand the
message traffic generated by an application. A number of tools can be used to
analyze this aspect of a message passing application’s performance, including
Performance Co-Pilot and various third party products. In this chapter, you can learn
how to use these various tools with MPI applications.

Using Profiling Tools with MPI Applications
Two of the most common SGI profiling tools are SpeedShop and perfex. On Altix,
profile.pl and histx+ are commonly used. The following sections describe how
to invoke these tools. Performance Co-Pilot (PCP) tools and tips for writing your own
tools are also included.

Note: SpeedShop is available on IRIX systems only.

SpeedShop

You can use SpeedShop as a general purpose profiling tool or specific profiling tool
for MPI potential bottlenecks. It has an advantage over many of the other profiling
tools because it can map information to functions and even line numbers in the user
source program. The examples listed below are in order from most general purpose
to the most specific. You can use the -ranks option to limit the data files generated
to only a few ranks.

General format:

% mpirun -np 4 ssrun [ssrun_options] a.out
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Examples:

% mpirun -np 32 ssrun -pcsamp a.out # general purpose, low cost
% mpirun -np 32 ssrun -usertime a.out # general purpose, butterfly view

% mpirun -np 32 ssrun -bbcounts a.out # most accurate, most cost, butterfly view

% mpirun -np 32 ssrun -mpi a.out # traces MPI calls

% mpirun -np 32 ssrun -tlb_hwctime a.out # profiles TLB misses

For further information and examples, see the SpeedShop User’s Guide.

perfex

You can use perfex to obtain information concerning the hardware performance
monitors.

General format:

% mpirun -np 4 perfex -mp [perfex_options] -o file a.out

Example:

% mpirun -np 4 perfex -mp -e 23 -o file a.out # profiles TLB misses

Note: perfex is available on IRIX systems only.

profile.pl

On Altix systems, you can use profile.pl to obtain procedure level profiling as
well as information about the hardware performance monitors. For further
information, see the profile.pl(1) and pfmon(1) man pages.

General format:

% mpirun -np 4 profile.pl [profile.pl_options] ./a.out

Example:

% mpirun -np 4 profile.pl -s1 -c4,5 -N 1000 ./a.out
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histx+

On Altix systems, histx+ is a small set of tools that can assist with performance
analysis and bottlenect identification.

General formats for histx (Histogram) and lipfpm (Linux IPF Performance
Monitor):

% mpirun -np 4 histx [histx_options] ./a.out

% lipfpm [lipfpm_options] mmpirun -np 4 ./a.out

Examples:

% mpirun -np 4 histx -f -o histx.out ./a.out

% lipfpm -f -e LOADS_RETIRED -e STORES_RETIRED mpirun -np 4 ./a.out

Profiling Interface
You can write your own profiling by using the MPI-1 standard PMPI_* calls. In
addition, either within your own profiling library or within the application itself you
can use the MPI_Wtime function call to time specific calls or sections of your code.

The following example is actual output for a single rank of a program that was run
on 128 processors, using a user-created profiling library that performs call counts and
timings of common MPI calls. Notice that for this rank most of the MPI time is being
spent in MPI_Waitall and MPI_Allreduce.

Total job time 2.203333e+02 sec
Total MPI processes 128

Wtime resolution is 8.000000e-07 sec

activity on process rank 0

comm_rank calls 1 time 8.800002e-06

get_count calls 0 time 0.000000e+00
ibsend calls 0 time 0.000000e+00

probe calls 0 time 0.000000e+00

recv calls 0 time 0.00000e+00 avg datacnt 0 waits 0 wait time 0.00000e+00

irecv calls 22039 time 9.76185e-01 datacnt 23474032 avg datacnt 1065

send calls 0 time 0.000000e+00
ssend calls 0 time 0.000000e+00

isend calls 22039 time 2.950286e+00
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wait calls 0 time 0.00000e+00 avg datacnt 0
waitall calls 11045 time 7.73805e+01 # of Reqs 44078 avg data cnt 137944

barrier calls 680 time 5.133110e+00

alltoall calls 0 time 0.0e+00 avg datacnt 0

alltoallv calls 0 time 0.000000e+00

reduce calls 0 time 0.000000e+00
allreduce calls 4658 time 2.072872e+01

bcast calls 680 time 6.915840e-02

gather calls 0 time 0.000000e+00

gatherv calls 0 time 0.000000e+00

scatter calls 0 time 0.000000e+00

scatterv calls 0 time 0.000000e+00

activity on process rank 1

...

SGI provides a freeware MPI profiling library that might be useful as a starting point
for developing your own profiling routines. You can obtain this software at
http://freeware.sgi.com/index-by-alpha.html.

MPI Internal Statistics
MPI keeps track of certain resource utilization statistics. These can be used to
determine potential performance problems caused by lack of MPI message buffers
and other MPI internal resources.

To turn on the displaying of MPI internal statistics, use the MPI_STATS environment
variable or the -stats option on the mpirun command. MPI internal statistics are
always being gathered, so displaying them does not cause significant additional
overhead. In addition, one can sample the MPI statistics counters from within an
application, allowing for finer grain measurements. For information about these MPI
extensions, see the mpi_stats man page.

These statistics can be very useful in optimizing codes in the following ways:

• To determine if there are enough internal buffers and if processes are waiting
(retries) to aquire them

• To determine if single copy optimization is being used for point-to-point or
collective calls

• To determine additional resource contention when using GSN networks
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For additional information on how to use the MPI statistics counters to help tune the
run-time environment for an MPI application, see Chapter 6, "Run-time Tuning", page
37.

Performance Co-Pilot (PCP)
In addition to the tools described in the preceding sections, you can also use the MPI
agent for Performance Co-Pilot (PCP) to profile your application. The two additional
PCP tools specifically designed for MPI are mpivis and mpimon. These tools do not
use trace files and can be used live or can be logged for later replay.

For more information about configuring and using these tools, see the PCP tutorial in
/var/pcp/Tutorial/mpi.html. Following are examples of the mpivis and
mpimon tools.
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Figure 5-1 mpivis Tool
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Figure 5-2 mpimon Tool
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Third Party Products
Two third party tools that you can use with the SGI MPI implementation are Vampir
from Pallas (www.pallas.com) and Jumpshot, which is part of the MPICH
distribution. Both of these tools are effective for smaller, short duration MPI jobs.
However, the trace files these tools generate can be enormous for longer running or
highly parallel jobs. This causes a program to run more slowly, but even more
problematic is that the tools to analyze the data are often overwhelmed by the
amount of data.

A better approach is to use a general purpose profiling tool such as SpeedShop to
locate the problem area and then to turn on and off the tracing just around the
problematic areas of your code. With this approach, the display tools can better
handle the amount of data that is generated.
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Chapter 6

Run-time Tuning

This chapter discusses ways in which the user can tune the run-time environment to
improve the performance of an MPI message passing application on SGI computers.
None of these ways involve application code changes.

Reducing Run-time Variability
One of the most common problems with optimizing message passing codes on large
shared memory computers is achieving reproducible timings from run to run. To
reduce run-time variability, you can take the following precautions:

• Do not oversubscribe the system. In other words, do not request more CPUs than
are available and do not request more memory than is available. Oversubscribing
causes the system to wait unnecessarily for resources to become available and
leads to variations in the results and less than optimal performance.

• Avoid interference from other system activity. Both the Linux and IRIX kernels use
more memory on node 0 than on other nodes (node 0 is called the kernel node in
the following discussion). If your application uses almost all of the available
memory per processor, the memory for processes assigned to the kernel node can
unintentionally spill over to nonlocal memory. By keeping user applications off
the kernel node, you can avoid this effect.

Additionally, by restricting system daemons to run on the kernel node, you can
also deliver an additional percentage of each application CPU to the user. One
solution IRIX provides to solve this problem is the boot_cpuset(4) command.
The boot_cpuset (man boot_cpuset) capability allows creation of a cpuset that
contains the init process and all of its descendants, effectively preventing system
functions from interfering with batch jobs running on the rest of the machine.

• Avoid interference with other applications. You can use cpusets or cpumemsets to
address this problem also. You can use cpusets (for IRIX) or cpumemsets (for
Linux) to effectively partition a large, distributed memory host in a fashion that
minimizes interactions between jobs running concurrently on the system. See IRIX
Admin: Resource Administration and the Linux Resource Administration Guide for
information about cpusets and cpumemsets.
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• On a quiet, dedicated system, you can use dplace or the MPI_DSM_CPULIST
shell variable to improve run-time performance repeatability. These approaches
are not as suitable for shared, nondedicated systems.

• Use a batch scheduler; for example, LSF from Platform Computing or PBSpro from
Veridan. These batch schedulers use cpusets to avoid oversubscribing the system
and possible interference between applications.

Tuning MPI Buffer Resources
By default, the SGI MPI implementation buffers messages whose lengths exceed 64
bytes. Longer messages are buffered in a shared memory region to allow for
exchange of data between MPI processes. In the SGI MPI implementation, these
buffers are divided into two basic pools.

• For messages exchanged between MPI processes within the same host, buffers
from the ”per process” pool (called the “per proc” pool) are used. Each MPI
process is allocated a fixed portion of this pool when the application is launched.
Each of these portions is logically partitioned into 16-KB buffers.

• For MPI jobs running across multiple hosts, a second pool of shared memory is
available. Messages exchanged between MPI processes on different hosts use this
pool of shared memory, called the “per host” pool. The structure of this pool is
somewhat more complex than the “per proc” pool.

For an MPI job running on a single host, messages that exceed 64 bytes are handled
as follows. For messages with a length of 16 KB or less, the sender MPI process
buffers the entire message. It then delivers a message header (also called a control
message) to a mailbox, which is polled by the MPI receiver when an MPI call is
made. Upon finding a matching receive request for the sender’s control message, the
receiver copies the data out of the shared memory buffer into the application buffer
indicated in the receive request. The receiver then sends a message header back to the
sender process, indicating that the shared memory buffer is available for reuse.
Messages whose length exceeds 16 KB are broken down into 16-KB chunks, allowing
the sender and receiver to overlap the copying of data to and from shared memory in
a pipeline fashion.

Because there is a finite number of these shared memory buffers, this can be a
constraint on the overall application performance for certain communication patterns.
You can use the MPI_BUFS_PER_PROC shell variable to adjust the number of buffers
available for the “per proc” pool. Similarly, you can use the MPI_BUFS_PER_HOST
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shell variable to adjust the “per host” pool. You can use the MPI statistics counters to
determine if retries for these shared memory buffers are occurring.

For information on the use of these counters, see "MPI Internal Statistics", page 32. In
general, you can avoid excessive numbers of retries for buffers by increasing the
number of buffers for the “per proc” pool or “per host” pool. However, you should
keep in mind that increasing the number of buffers does consume more memory.
Also, increasing the number of “per proc” buffers does potentially increase the
probability for cache pollution (that is, the excessive filling of the cache with message
buffers). Cache pollution can result in degraded performance during the compute
phase of a message passing application.

There are additional buffering considerations to take into account when running an
MPI job across multiple hosts. For further discussion of multihost runs, see "Tuning
for Running Applications Across Multiple Hosts", page 46.

For further discussion on programming implications concerning message buffering,
see "Buffering", page 15.

Avoiding Message Buffering – Enabling Single Copy
For message transfers between MPI processes within the same host or transfers
between partitions, it is possible under certain conditions to avoid the need to buffer
messages. Because many MPI applications are written assuming infinite buffering, the
use of this unbuffered approach is not enabled by default for MPI_Send. This section
describes how to activate this mechanism by default for MPI_Send. For MPI_Isend,
MPI_Sendrecv, MPI_Alltoall, MPI_Bcase, MPI_Allreduce, and MPI_Reduce,
this optimization is enabled by default for large message sizes.

Using Global Memory for Single Copy Optimization

On IRIX systems, when global memory is used for single copy optimization, the
sender’s message data must reside in globally accessible memory. Globally accessible
memory includes common block or static memory and memory allocated with the
Fortran 90 allocate statement or MPI_Alloc_mem (with the SMA_GLOBAL_ALLOC
environment variable set). In addition, applications linked against the SHMEM
library can also access the LIBSMA symmetric heap via the shpalloc or shmalloc
functions. Consequently, use of this feature might require changes to the application.
Additional restrictions are described in "Avoiding Message Buffering — Single Copy
Methods", page 22.
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The threshold for message lengths beyond which MPI attempts to use this single copy
method is specified by the MPI_BUFFER_MAX shell variable. Its value should be set to
the message length in bytes beyond which the single copy method should be tried. In
general, a value of 2000 or higher is beneficial for most applications running on a
single host. To disable default single copy, use the
MPI_DEFAULT_SINGLE_COPY_OFF environment variable.

Using the XPMEM Driver for Single Copy Optimization

MPI can take advantage of the XPMEM driver, a special cross-partition device driver,
available on both IRIX and Linux systems, that allows the operating system to copy
data between two processes within the same host or across partitions.

On systems running IRIX, this feature requires IRIX 6.5.13 or greater and is available
only on Origin 300 and 3000 series servers. This option is not available on servers
running Trusted IRIX. The MPI library uses the XPMEM driver to enhance single
copy optimization (within a host) to eliminate some of the restrictions with only a
slight (less that 5 percent) performance cost over the more restrictive single copy
optimization using globally accessible memory.

You can enable this optimization if you set the MPI_XPMEM_ON and
MPI_BUFFER_MAX environment variables. Note that if the sender data resides in
globally accessible memory, the data is copied using a bcopy process. Otherwise, the
XPMEM driver is used to transfer the data. Using the XPMEM form of single copy is
less restrictive in that the sender’s data is not required to be globally accessible. It is
available for ABI N32 as well as ABI 64. This optimization also can be used to
transfer data between two different executable files on the same host or two different
executable files across IRIX partitions.

Note: Use of the XPMEM driver disables the ability to checkpoint/restart an MPI job.

On IRIX systems, under certain conditions, the XPMEM driver can take advantage of
the block transfer engine (BTE) to provide increased bandwidth. In addition to
having MPI_BUFFER_MAX and MPI_XPMEM_ON set, the send and receive buffers must
be cache-aligned and the amount of data to transfer must be greater than or equal to
MPI_XPMEM_THRESHOLD. The default value for MPI_XPMEM_THRESHOLD is 8192.

On systems running Linux, use of the XPMEM driver is required to support
single-copy message transfers between two processes within the same host or across
partitions. On Linux systems, during job startup, MPI uses the XPMEM driver (via
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the xpmem kernel module) to map memory from one MPI process onto another. The
mapped areas include the static region, private heap, and stack region of each process.

Memory mapping allows each process to directly access memory from the address
space of another process. This technique allows MPI to support single copy transfers
for contiguous data types from any of these mapped regions. For these transfers,
whether between processes residing on the same host or across partitions, the data is
copied using a bcopy process. A bcopy process is also used to transfer data
between two different executable files on the same host or two different executable
files across partitions. For data residing outside of a mapped region (a /dev/zero
region, for example), MPI uses the XPMEM driver to copy the data.

Memory mapping is enabled by default on Linux. To disable it, set the
MPI_MEMMAP_OFF environment variable. Memory mapping must be enabled to allow
single-copy transfers, MPI-2 one-sided communication, and certain collective
optimizations.

Memory Placement and Policies
The MPI library takes advantage of NUMA placement functions that are available on
IRIX and Linux systems. Usually, the default placement is adequate. Under certain
circumstances, however, you might want to modify this default behavior. The easiest
way to do this is by setting one or more MPI placement shell variables. Several of the
most commonly used of these variables are discribed in the following sections. For a
complete listing of memory placement related shell variables, see the MPI(1) man
page.

MPI_DSM_CPULIST

The MPI_DSM_CPULIST shell variable allows you to manually select processors to
use for an MPI application. At times, specifying a list of processors on which to run a
job can be the best means to insure highly reproducible timings, particularly when
running on a dedicated system.

This setting is treated as a comma and/or hyphen delineated ordered list that
specifies a mapping of MPI processes to CPUs. If running across multiple hosts, the
per host components of the CPU list are delineated by colons.
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Note: This feature will not be compatible with job migration features available in
future IRIX releases. In addition, this feature should not be used with MPI
applications that use either of the MPI-2 spawn related functions.

Examples of settings are as follows:

Value CPU Assignment

8,16,32 Place three MPI processes on CPUs 8, 16, and 32.

32,16,8 Place the MPI process rank zero on CPU 32, one on 16,
and two on CPU 8.

8-15,32-39 Place the MPI processes 0 through 7 on CPUs 8 to 15.
Place the MPI processes 8 through 15 on CPUs 32 to 39.

39-32,8-15 Place the MPI processes 0 through 7 on CPUs 39 to 32.
Place the MPI processes 8 through 15 on CPUs 8 to 15.

8-15:16-23 Place the MPI processes 0 through 7 on the first host on
CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.

Note that the process rank is the MPI_COMM_WORLD rank. The interpretation of the
CPU values specified in the MPI_DSM_CPULIST depends on whether the MPI job is
being run within a cpuset. If the job is run outside of a cpuset, the CPUs specify
cpunum values given in the hardware graph (hwgraph(4)). When running within a
cpuset, the default behavior is to interpret the CPU values as relative processor
numbers within the cpuset. To specify cpunum values instead, you can use the
MPI_DSM_CPULIST_TYPE(MPI(1)) shell variable.

The number of processors specified should equal the number of MPI processes that
will be used to run the application. The number of colon delineated parts of the list
must equal the number of hosts used for the MPI job. If an error occurs in processing
the CPU list, the default placement policy is used. To insure linking of the MPI
processes to the designated processors, you should also set the MPI_DSM_MUSTRUN
shell variable on IRIX only.

MPI_DSM_DISTRIBUTE (Linux only)

Use the MPI_DSM_DISTRIBUTE shell variable to ensure that each MPI process will
get a physical CPU and memory on the node to which it was assigned. On Linux
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systems, if this environment variable is used without specifying an
MPI_DSM_CPULIST variable, it will cause MPI to assign MPI ranks starting at logical
CPU 0 and incrementing until all ranks have been placed. On Linux systems,
therefore, it is recommended that this variable be used only if running within a
cpumemset or on a dedicated system.

MPI_DSM_MUSTRUN (IRIX only)

Use the MPI_DSM_MUSTRUN shell variable to ensure that each MPI process will get a
physical CPU and memory on the node to which it was assigned. It has been
observed that using this shell variable has led to improved performance, especially on
IRIX systems running version 6.5.7 and earlier. With the MPT 1.8 release, the
MPI_DSM_MUSTRUN variable is deprecated on Linux. Use MPI_DSM_DISTRIBUTE
instead.

MPI_DSM_PPM

The MPI_DSM_PPM shell variable allows you to specify the number of MPI processes
to be placed on a node. Memory bandwidth intensive applications can benefit from
placing fewer MPI processes on each node of a distributed memory host. On Origin
200 and Origin 2000 series servers, the default is to place two MPI processes on each
node. On Origin 300 and Origin 3000 series servers, the default is four MPI processes
per node. You can use the MPI_DSM_PPM shell variable to change these values. On
Origin 300 and Origin 3000 series servers, setting MPI_DSM_PPM to 2 places one MPI
process on each memory bus. On SGI Altix 3000 systems, setting MPI_DSM_PPM to 1
places one MPI process on each node.

MPI_DSM_VERBOSE

Setting the MPI_DSM_VERBOSE shell variable directs MPI to display a synopsis of the
NUMA placement options being used at run time.

PAGESIZE_DATA and PAGESIZE_STACK

You can use the PAGESIZE_DATA and PAGESIZE_STACK variables to request
nondefault page sizes (in kilobytes). Setting these variables can be helpful for
applications that experience frequent TLB misses. You can ascertain this condition by
using the ssrun or perfex profiling tools. However, these variables should be used
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with caution. Generally, system administrators do not configure the system to have
many large pages per node. If very large page sizes are requested, you might lose
good memory locality if the operating system is able to satisfy the large page request
only with remote memory.

Note: Because these variables are associated with NUMA placement, disabling
NUMA placement via the MPI_DSM_OFF shell variable disables the use of these page
size shell variables.

Note: These shell variables are currently not available on Linux systems.

Using dplace for Memory Placement

The dplace tool offers another means of specifying the placement of MPI processes
within a distributed memory host. This tool is available on both Linux and IRIX
systems. Starting with IRIX 6.5.13, dplace and MPI interoperate to allow MPI to
better manage placement of certain shared memory data structures when dplace is
used to place the MPI job. If this interoperability feature is undesirable, you can set
the MPI_DPLACE_INTEROP_OFF shell variable.

For instructions on how to use dplace with MPI, see the dplace(1) man page.

Tuning MPI/OpenMP Hybrid Codes
Hybrid MPI/OpenMP applications might require special memory placement features
to operate efficiently on ccNUMA Origin servers. This section describes a preliminary
method for achieving this memory placement.

The basic idea is to space out the MPI processes to accommodate the OpenMP
threads associated with each MPI process. In addition, assuming a particular ordering
of library init code (see the DSO man page), this method employs procedures to
insure that the OpenMP threads remain close to the parent MPI process. This type of
placement has been found to improve the performance of some hybrid applications
significantly.

To take partial advantage of this placement option, the following requirements must
be met:
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• When running the application, you must set the MPI_OPENMP_INTEROP shell
variable.

• To compile the application, you must use a MIPSpro compiler and the -mp
compiler option. This hybrid model placement option is not available with other
compilers.

• The application must run on an Origin 300 or Origin 3000 series server.

To take full advantage of this placement option, you must be able to link the
application such that the libmpi.so init code is run before the libmp.so init
code. For instructions on how to link the hybrid application, see "Compiling and
Linking IRIX MPI Programs", page 5. This linkage issue has been removed in the
MIPspro 7.4 (and later versions) compilers. It may, however, remain in earlier
compiler versions.

You can use an additional memory placement feature for hybrid MPI/OpenMP
applications by using the MPI_DSM_PLACEMENT shell variable. Specification of a
“threadroundrobin” policy results in the parent MPI process stack, data, and heap
memory segments being spread across the nodes on which the child OpenMP threads
are running.

MPI reserves nodes for this hybrid placement model based on the number of MPI
processes and the number of OpenMP threads per process, rounded up to the nearest
multiple of 4. For example, if 6 OpenMP threads per MPI process are going to be
used for a 4 MPI process job, MPI will request a placement for 32 (4 X 8) CPUs on the
host machine. You should take this into account when requesting resources in a batch
environment or when using cpusets. In this implementation, it is assumed that all
MPI processes start with the same number of OpenMP threads, as specified by the
OMP_NUM_THREADS or equivalent shell variable at job startup.

This placement is not recommended if you set _DSM_PPM to a non-default value (for
more information, see pe_environ). Also, it is suggested that the mustrun shell
variables (MPI_DSM_MUSTRUN and _DSM_MUSTRUN) not be set when using this
placement model.

On Linux systems the MPI_OPENMP_INTEROP variable is supported. However, the
OpenMP threads are not actually pinned to a CPU but are free to migrate to any of
the CPUs in the OpenMP thread group for each MPI rank. The pinning of the
OpenMP thread to a specific CPU will be supported in a future release.
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Tuning for Running Applications Across Multiple Hosts
When you are running an MPI application across a cluster of hosts, there are
additional run-time environment settings and configurations that you can consider
when trying to improve application performance.

IRIX hosts can be clustered using a variety of high performance interconnects. You
can use the XPMEM interconnect to cluster Origin 300 and Origin 3000 series servers
as partitioned systems. Other high performance interconnects include GSN and
Myrinet. If none of these interconnects is available, MPI relies on TCP/IP to handle
MPI traffic between hosts.

Systems running Linux can use the XPMEM interconnect to cluster hosts as
partitioned systems, or rely on TCP/IP as the multihost interconnect.

When launched as a distributed application, MPI probes for these interconnects at job
startup. For details of launching a distributed application, see "Launching a
Distributed Application", page 8. When a high performance interconnect is detected,
MPI attempts to use this interconnect if it is available on every host being used by the
MPI job. If the interconnect is not available for use on every host, the library attempts
to use the next slower interconnect until this connectivity requirement is met. Table
6-1, page 46 specifies the order in which MPI probes for available interconnects.

Table 6-1 Inquiry Order for Available Interconnects

Interconnect
Default Order of
Selection Environment Variable to Require Use

Environment
Variable for
Specifying Device
Selection

XPMEM 1 MPI_USE_XPMEM NA

GSN 2 MPI_USE_GSN MPI_GSN_DEVS

Myrinet(GM) 3 MPI_USE_GM MPI_GM_DEVS

TCP/IP 5 MPI_USE_TCP NA

The third column of Table 6-1, page 46, also indicates the environment variable you
can set to pick a particular interconnect other than the default. For example, suppose
you want to run an MPI job on a cluster supporting both GSN and Myrinet (GM)
interconnects. By default, the MPI job would try to run over the GSN interconnect. If
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for some reason you wanted to use the Myrinet (GM) interconnect, you would set the
MPI_USE_GM shell variable before launching the job. This would cause the MPI
library to attempt to run the job using the Myrinet (GM) interconnect. If the Myrinet
interconnect cannot be used, the job will fail.

The XPMEM interconnect is an exception in that it does not require that all hosts in
the MPI job need to be reachable via the XPMEM device. Message traffic between
hosts not reachable via XPMEM will go over the next fastest interconnect. Also, when
you specify a particular interconnect to use, you can set the MPI_USE_XPMEM variable
in addition to one of the other four choices.

In general, to insure the best performance of the application, you should allow MPI to
pick the fastest available interconnect.

When running in cluster mode, be careful about setting the MPI_BUFFER_MAX value
too low. Setting it less than 16384 bytes could lead to a significant increase in the
number of small control messages sent over the interconnect, possibly leading to
performance degradation.

In addition to the choice of interconnect, you should know that multihost jobs use
different buffers from those used by jobs run on a single host. In the SGI
implementation of MPI, all of the previously mentioned interconnects rely on the “per
host” buffers to deliver long messages. The default setting for the number of buffers
per host might be too low for many applications. You can determine whether this
setting is too low by using the MPI statistics described earlier in this section.

In particular, you should examine the metric for retries allocating MPI per host
buffers. High retry counts usually indicate that the MPI_BUFS_PER_HOST shell
variable should be increased. Table 6-2, page 47 provides an example of application
performance as a function of the number of “per host” message buffers. Here, the
Fourier Transform (FT) class C benchmark was run on a cluster of four Origin 300
servers (32 CPUs each) using Myrinet. Note that the performance improves by almost
a factor of three by increasing the MPI_BUFS_PER_HOST from the default of 32
buffers to 128 buffers per host.

Table 6-2 NPB FT Class C Running on 128 CPUs

MPI_BUFS_PER_HOST Setting Execution Time (secs)

32 (default) 280

64 144
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MPI_BUFS_PER_HOST Setting Execution Time (secs)

128 108

256 104

When considering these MPI statistics, GSN users should also examine the counter
for retries allocating MPI per host message headers. In cases in which this metric
indicates high numbers of retries, it might be necessary to increase the
MPI_MSGS_PER_HOST shell variable . Myrinet (GM) does not use this resource.

When using GSN or Myrinet high performance networks, MPI attempts to use all
adapters (cards) available on each host in the job. You can modify this behavior by
specifying specific adapter(s) to use. The fourth column of Table 6-1, page 46
indicates the shell variable to use for a given network. For details on syntax, see the
MPI man page.

When using the TCP/IP interconnect, unless specified otherwise, MPI uses the default
IP adapter for each host. To use a nondefault adapter, enter the adapter-specific host
name on the mpirun command line.
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Troubleshooting and Frequently Asked Questions

This chapter provides answers to some common problems users encounter when
starting to use SGI’s MPI, as well as answers to other frequently asked questions.

What are some things I can try to figure out why mpirun is failing?
Here are some things to investigate:

• On IRIX systems, look at the last few lines in /var/adm/SYSLOG for any
suspicious errors or warnings. On Linux systems, look in /var/log/messages.
For example, if your application tries to pull in a library that it cannot find, a
message should appear here.

• Be sure that you did not misspell the name of your application.

• To find rld/dynamic link errors, try to run your program without mpirun. You
will get the “mpirun must be used to launch all MPI applications"
message, along with any rld link errors that might not be displayed when the
program is started with mpirun.

• Be sure that you are setting your remote directory properly. By default, mpirun
attempts to place your processes on all machines into the directory that has the
same name as $PWD. This should be the common case, but sometimes different
functionality is required. For more information, see the section on $MPI_DIR
and/or the -dir option in the mpirun man page.

• If you are using a relative pathname for your application, be sure that it appears
in $PATH. In particular, mpirun will not look in ’.’ for your application unless ’.’
appears in $PATH.

• Run /usr/etc/ascheck to verify that your array is configured correctly.

• Be sure that you can execute rsh (or arshell) to all of the hosts that you are
trying to use without entering a password. This means that either
/etc/hosts.equiv or ~/.rhosts must be modified to include the names of
every host in the MPI job. Note that using the -np syntax (i.e. no hostnames) is
equivalent to typing localhost, so a localhost entry will also be needed in one of
the above two files.
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• On IRIX systems, if you are using an mpt module to load MPI, try loading it
directly from within your .cshrc file instead of from the shell. If you are also
loading a MIPSpro module, be sure to load it after the mpt module.

• Use the -verbose option to verify that you are running the version of MPI that
you think you are running.

• Be very careful when setting MPI environment variables from within your
.cshrc or .login files, because these will override any settings that you might
later set from within your shell (due to the fact that MPI creates the equivalent of
a fresh login session for every job). The safe way to set things up is to test for the
existence of $MPI_ENVIRONMENT in your scripts and set the other MPI
environment variables only if it is undefined.

• If you are running under a Kerberos environment, you may experience
unpredictable results because currently, mpirun is unable to pass tokens. For
example, in some cases, if you use telnet to connect to a host and then try to
run mpirun on that host, it fails. But if you instead use rsh to connect to the
host, mpirun succeeds. (This might be because telnet is kerberized but rsh is
not.) At any rate, if you are running under such conditions, you will definitely
want to talk to the local administrators about the proper way to launch MPI jobs.

My code runs correctly until it reaches MPI_Finalize() and then it hangs.
This is almost always caused by send or recv requests that are either unmatched or
not completed. An unmatched request is any blocking send for which a
corresponding recv is never posted. An incomplete request is any nonblocking send
or recv request that was never freed by a call to MPI_Test(), MPI_Wait(), or
MPI_Request_free().

Common examples are applications that call MPI_Isend() and then use internal
means to determine when it is safe to reuse the send buffer. These applications never
call MPI_Wait(). You can fix such codes easily by inserting a call to
MPI_Request_free() immediately after all such isend operations, or by adding a
call to MPI_Wait() at a later place in the code, prior to the point at which the send
buffer must be reused.
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I keep getting error messages about MPI_REQUEST_MAX being too small,
no matter how large I set it.

There are two types of cases in which the MPI library reports an error concerning
MPI_REQUEST_MAX. The error reported by the MPI library distinguishes these.

MPI has run out of unexpected request entries;

the current allocation level is: XXXXXX

The program is sending so many unexpected large messages (greater than 64 bytes) to
a process that internal limits in the MPI library have been exceeded. The options here
are to increase the number of allowable requests via the MPI_REQUEST_MAX shell
variable, or to modify the application.

MPI has run out of request entries;

the current allocation level is: MPI_REQUEST_MAX = XXXXX

You might have an application problem. You almost certainly are calling
MPI_Isend() or MPI_Irecv() and not completing or freeing your request objects.
You need to use MPI_Request_free(), as described in the previous section.

I am not seeing stdout and/or stderr output from my MPI application.
Beginning with our MPT 1.2/MPI 3.1 release, all stdout and stderr is
line-buffered, which means that mpirun does not print any partial lines of output.
This sometimes causes problems for codes that prompt the user for input parameters
but do not end their prompts with a newline character. The only solution for this is to
append a newline character to each prompt.

Beginning with MPT 1.5.2, you can set the MPI_UNBUFFERED_STDIO environment
variable to disable line-buffering. For more information, see the MPI(1) and
mpirun(1) man pages.

How can I get the MPT software to install on my machine?
Message-Passing Toolkit software releases can be obtained at the SGI Software
Download page at

http://www.sgi.com/products/evaluation/
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Where can I find more information about SHMEM?
See the intro_shmem(3) man page.

The ps(1) command says my memory use (SIZE) is higher than expected.
At MPI job start-up, when running on IRIX hosts, MPI calls SHMEM to cross-map all
user static memory on all MPI processes to provide optimization opportunities. The
result is large virtual memory usage. The ps(1) command’s SIZE statistic is telling
you the amount of virtual address space being used, not the amount of memory
being consumed. Even if all of the pages that you could reference were faulted in,
most of the virtual address regions point to multiply-mapped (shared) data regions,
and even in that case, actual per-process memory usage would be far lower than that
indicated by SIZE.

What does MPI: could not run executable mean?
This message means that something happened while mpirun was trying to launch
your application, which caused it to fail before all of the MPI processes were able to
handshake with it.

With Array Services 3.2 or later and MPT 1.3 or later, many scenarios that generated
this error message are now improved to be more descriptive.

Prior to Array Services 3.2, no diagnostic information was directly available. This was
due to the highly decoupled interface between mpirun and arrayd.

mpirun directs arrayd to launch a master process on each host and listens on a
socket for those masters to connect back to it. Since the masters are children of
arrayd, arrayd traps SIGCHLD and passes that signal back to mpirun whenever
one of the masters terminates. If mpirun receives a signal before it has established
connections with every host in the job, it knows that something has gone wrong.

How do I combine MPI with insert favorite tool here?
In general, the rule to follow is to run mpirun on your tool and then the tool on your
application. Do not try to run the tool on mpirun. Also, because of the way that
mpirun sets up stdio, seeing the output from your tool might require a bit of effort.
The most ideal case is when the tool directly supports an option to redirect its output
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to a file. In general, this is the recommended way to mix tools with mpirun. Of
course, not all tools (for example, dplace) support such an option. However, it is
usually possible to make it work by wrapping a shell script around the tool and
having the script do the redirection, as in the following example:

> cat myscript

#!/bin/sh

setenv MPI_DSM_OFF

dplace -verbose a.out 2> outfile
> mpirun -np 4 myscript

hello world from process 0

hello world from process 1

hello world from process 2

hello world from process 3
> cat outfile

there are now 1 threads

Setting up policies and initial thread.

Migration is off.

Data placement policy is PlacementDefault.
Creating data PM.

Data pagesize is 16k.

Setting data PM.

Creating stack PM.

Stack pagesize is 16k.

Stack placement policy is PlacementDefault.
Setting stack PM.

there are now 2 threads

there are now 3 threads

there are now 4 threads

there are now 5 threads

Must I use MPIO_Wait() and MPIO_Test()?
Beginning with MPT 1.8, MPT has unified the I/O requests generated from
nonblocking I/O routines (such as MPI_File_iwrite()) and MPI requests from
nonblocking message-passing routines (for example, MPI_Isend()). Formerly, these
were different types of request objects and needed to be kept separate (one was called
MPIO_Request and the other, MPI_Request). Under MPT 1.8 and later, however,
this distinction is no longer necessary. You can freely mix request objects returned
from I/O and MPI routines in calls to MPI_Wait(), MPI_Test(), and their variants.

007–3687–010 53



7: Troubleshooting and Frequently Asked Questions

Must I modify my code to replace calls to MPIO_Wait() with MPI_Wait()
and recompile?

No. If you have an application that you compiled prior to MPT 1.8, you can continue
to execute that application under MPT 1.8 and beyond without recompiling.
Internally, MPT uses the unified requests, and for example, translates calls to
MPIO_Wait() into calls to MPI_Wait().

Why do I see “stack traceback” information when my MPI job aborts?
This is a new feature beginning with MPT 1.8. More information can be found in the
MPI(1) man page in descriptions of the MPI_COREDUMP and
MPI_COREDUMP_DEBUGGER environment variables.
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