
Loose Specifications

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at 1/42

1. General Remarks

2. Loose Specifications

3. Loose Specifications with Constructors

4. Loose Specifications with Free Constructors

5. Summary

Wolfgang Schreiner http://www.risc.jku.at 2/42

Specifications

We will introduce various flavors of specifications of ADTs.

Specification semantics: sp → M(sp).

Specification sp.
Its meaning M(sp) (an abstract datatype).

sp is an adequate specification of an ADT C:
C ⊆ M(sp).

sp is a strictly adequate specification of an ADT C:
C = M(sp).

sp is a (strictly) adequate specification of an algebra A:

sp is (strictly) adequate specification of the monomorphic ADT [A].

sp is polymorphic (monomorphic):

sp defines a polymorphic (monomorphic) ADT.

General notions independent of the kind of specification.

Wolfgang Schreiner http://www.risc.jku.at 3/42

Properties of Specifications

Is the specification inconsistent?

Is the specified ADT empty (i.e. does not contain any algebras)?

Is the specification monomorphic?

Are all algebras of the specified ADT isomorphic?

Are two specifications equivalent?

Do they specify the same ADT?

Does the specification (strictly) adequately describe a given ADT?
Assumes that the ADT is mathematically defined by other means.

But specification itself is typically the only definition of the ADT.
Then no mathematical proof of adequacy is possible.
Nevertheless, by “executing the specifications” (mechanically
evaluating ground terms), we may investigate the properties of the
specified ADT to increase our confidence in its adequacy.

All these questions now have a precise meaning.

Wolfgang Schreiner http://www.risc.jku.at 4/42

1. General Remarks

2. Loose Specifications

3. Loose Specifications with Constructors

4. Loose Specifications with Free Constructors

5. Summary

Wolfgang Schreiner http://www.risc.jku.at 5/42

Loose Specifications

Take logic L.

Loose specification sp = (Σ,Φ) in L:

Signature Σ, set of formulas Φ ⊆ L(Σ).

Semantics M(sp) = ModΣ(Φ).
All Σ-algebras are candidates for the specified ADT.

ModΣ(Φ) = ModAlg(Σ),Σ(Φ).

A loose specification specifies as the abstract datatype the class of all
models of its formula set.

Wolfgang Schreiner http://www.risc.jku.at 6/42

Concrete Syntax

loose spec
sorts sort . . .
opns operation . . .
vars variable: sort . . .
axioms formula . . .

endspec

Signature Σ = ({sort , . . .}, {operation, . . .}).
Set of formulas Φ = {(∀variable : sort, formula), . . .}.

We will only use the concrete syntax to define specifications.

Wolfgang Schreiner http://www.risc.jku.at 7/42

Example

loose spec
sorts el , bool , list
opns

True :→ bool
False :→ bool
[] :→ list
Add : el × list → list
. : list × list → list

vars l ,m : list, e : el
axioms

[].l = l
Add(e, l).m = Add(e, l .m)

endspec

Adequate specification of the “classical” list algebra in EL.

Wolfgang Schreiner http://www.risc.jku.at 8/42

Strict Adequacy

Not a strictly adequate specification of the “classical” list algebra.

Carrier for bool may collapse (“confusion” among True and False).
PL: axiom ¬(True = False)

Carrier for list may collapse (“confusion” among [] and Add(e, l)).
PL: axiom ∀e : el , l : list . ¬([] = Add(e, l))

Size of lists may be bound (“confusion” among Add terms).
PL: axiom ∀e1, e2 : elem, l1, l2 : list .

Add(e1, l1) = Add(e2, l2) ⇒ e1 = e2 ∧ l1 = l2
Carriers may contain extra values (“junk”).

There may a bool value different from True and False.
PL: axiom ∀b : bool . b = True ∨ b = False

There may be list values different from those that can be constructed
by application of [] and Add .

No axiom can express this in PL, a solution will be later presented.

In PL (not EL or CEL), additional axioms may solve some problems of
“junk” and “confusion”.

Wolfgang Schreiner http://www.risc.jku.at 9/42

Example

loose spec
sorts el , bool , list
opns

True :→ bool
False :→ bool
[] :→ list
Add : el × list → list
. : list × list → list

vars l , l1, l2 : list, e, e1, e2 : el , b : bool
axioms

¬(True = False)
b = True ∨ b = False
¬([] = Add(e, l))
Add(e1, l1) = Add(e2, l2) ⇒

e1 = e2 ∧ l1 = l2
[].l = l
Add(e, l1).l2 = Add(e, l1.l2)

endspec

More (but still not strictly) adequate specification of the “classical” list
algebra in PL.

Wolfgang Schreiner http://www.risc.jku.at 10/42

Example

loose spec
sorts bool , nat
opns

True :→ bool
False :→ bool
0 :→ nat
Succ : nat → nat
+ : nat × nat → nat
∗ : nat × nat → nat
≤ : nat × nat → bool

vars m, n : nat, b : bool
axioms

¬(True = False)
b = True ∨ b = False
¬(0 = Succ(n))
Succ(n) = Succ(m) ⇒ n = m
(0 ≤ n) = True
(Succ(n) ≤ 0) = False
(Succ(n) ≤ Succ(m)) = (n ≤ m)
n + 0 = n
n + Succ(m) = Succ(n +m)
n ∗ 0 = 0
n ∗ Succ(m) = n + (n ∗m)

endspec

Adequate specification of Peano arithmetic in PL (not strictly adequate
because nat may contain junk).

Wolfgang Schreiner http://www.risc.jku.at 11/42

Proving Strategies for Loose Specifications

Take loose specification sp = (Σ,Φ) in logic L with inference calculus ⊢.
Prove: M(sp) |= ϕ.

Every implementation of the specification sp has the property
expressed by formula ϕ.
It suffices to prove Φ ⊢ ϕ.

Formula ϕ can be derived from the specification axioms Φ.

Prove: M(sp) ⊆ M(sp′).
Loose specification sp′ = (Σ,Ψ).
Every implementation of the specification sp is also an
implementation of the specification sp′.
It suffices to prove Φ ⊢ Ψ.

Every axiom ψ ∈ Ψ can be derived from the axioms Φ.

Straight-forward reduction of semantic questions to proving.

Wolfgang Schreiner http://www.risc.jku.at 12/42

Expressive Power of Loose Specifications

Take loose specification sp = (Σ,Φ) with Φ ⊆ L(Σ).

Theorem 1: M(sp) = ModΣ(ThL(M(sp))).
ThL(C) = {φ ∈ L(Σ) | ∀A ∈ C : A |=Σ φ}.

The theory of a class of algebras w.r.t. a given logic is the set of all
formulas of that logic that are satisfied by every algebra of the class.

Thus sp can specify an ADT C only if C = ModΣ(ThL(C)).
Example:

Signature NAT = ({nat}, {0 :→ nat, s : nat → nat}).
NAT-algebra N = ({N}, {0N, (λx . x + 1)}).
[N] cannot be specified by any specification sp in EL(NAT).

Assume specification sp with M(sp) = [N].
ThEL([N]) = {0 = 0, s(0) = s(0), s(s(0)) = s(s(0)), . . .}.
Take NAT-algebra A = ({0, 1}, 0, λx . 1− x))
Clearly A 6≃ N, thus A 6∈ M(sp).
But, since A |= ThEL({N}) , A ∈ ModΣ(ThEL([N])), and thus, by
Theorem 1, A ∈ M(sp).

Algebras can be discriminated only by the expressible formulas.
Wolfgang Schreiner http://www.risc.jku.at 13/42

Expressive Power of Loose Specifications

Take loose specification sp = (Σ,Φ) with Φ ⊆ L(Σ).

Theorem 2: If L has a sound and complete calculus and if Φ is
recursively enumerable, then M(sp) is axiomatizable in L.

Set S is recursively enumerable, if there is an algorithm that lists all
of its elements (running forever, if necessary).
A class C of Σ-algebras is axiomatizable in L, if ThL(C) is recursively
enumerable.

An ADT whose theory is not recursively enumerable in the given
logic, may not be specifiable by a loose specification.

Example: Peano arithmetic (natural numbers with addition and
multiplication).
The theory of peano arithmetic is not recursively enumerable in
first-order predicate logic.
Gödel’s second incompleteness theorem: Peano arithmetic is not
axiomatizable in first-order predicate logic.

Not every ADT can be specified by a loose specification.
Wolfgang Schreiner http://www.risc.jku.at 14/42

Expressive Power of Loose Specifications

Take loose specification sp = (Σ,Φ) with Φ ⊆ L(Σ).

Theorem 3: If L is EL or CEL, then M(sp) also contains algebras
whose carriers are singletons (i.e., whose terms are “confused”).

Consequence: No ADT with non-singleton carriers can be strictly
adequately described by a loose specification in EL or CEL.

Cannot prevent “collapse” of the carrier.

Theorem 4: If L is EL, CEL, or PL and M(sp) contains an algebra
with an infinite carrier, then M(sp) also contains algebras whose
corresponding carriers contain “junk”.

Consequence: No ADT with an infinite carrier can be strictly
adequately described by a loose specification in EL, CEL, or PL.

Cannot rule out “extra” values in addition to the desired ones.

We need some more mechanisms for strictly adequate specifications.

Wolfgang Schreiner http://www.risc.jku.at 15/42

1. General Remarks

2. Loose Specifications

3. Loose Specifications with Constructors

4. Loose Specifications with Free Constructors

5. Summary

Wolfgang Schreiner http://www.risc.jku.at 16/42

Generated Algebras

Take signature Σ = (S ,Ω), Σ-algebra A.

Define set of operations Ωc ⊆ Ω (the constructors).

Restricted signature Σc = (S ,Ωc).

A is generated by Ωc :
For each sort s ∈ S and a ∈ A(s), there exists a ground term
t ∈ TΣc ,s with a = A(t).

Carrier a can be described by a term t that involves only constructors.

A is generated if it is generated by Ω.

Gen(Σ,Ωc) := {A ∈ Alg(Σ) | A is generated by Ωc}.
The set of all Σ-algebras generated by constructors Ωc .
Gen(Σ) := Gen(Σ,Ω).

Generated algebra does not contain “junk” in the carriers.

Wolfgang Schreiner http://www.risc.jku.at 17/42

Example

Take signature
NAT = ({nat},Ω = {0 :→ nat,Succ : nat → nat,+ : nat×nat → nat}).

Classical NAT-algebra A = (N, 0N,+N).

Constructors Ωc := {0 :→ nat,Succ : nat → nat}.
A is generated by Ωc :

For every n ∈ N, n = A(s(s(s(. . . (s︸ ︷︷ ︸
n times

(0)))))).

A is also generated by Ω.

Any superset of a set of constructors is also a set of constructors.

Usually one looks for the minimal set of constructors.

Wolfgang Schreiner http://www.risc.jku.at 18/42

Algebras Generated in Some Sorts

Take signature Σ = (S ,Ω), Σ-algebra A.

Define set of sorts Sc ⊆ S and set of operations Ωc ⊆ Ω (the
constructors) with target sorts in Sc .

Restricted signature Σc = (S ,Ωc).

A is generated by Ωc in Sc :
For each sort s ∈ Sc and a ∈ A(s), there exists

a set X of variables in Σ with Xs = ∅ for every s in Sc ,
an assignment α : X → A,
and a term t ∈ TΣc (X),s

with a = A(α)(t).

Value a can be described by a term t that involves only constructors
in the generated sorts and variables in the non-generated sorts.

A is generated in Sc if it is generated in Sc by Ω.

Algebra does not contain “junk” in the carrriers of the generated sorts.

Wolfgang Schreiner http://www.risc.jku.at 19/42

Example

Signature LIST = (S ,Ω):

S = {el , list}.
Ω = {[] :→ list,Add : el × list → list, · : list × list → list.

LIST-algebra A:

A(el) . . . a set of “elements”.
A(list) . . . the set of finite lists of elements.
A([]) . . . the empty list.
A(Add) adds an element at the front of the list.
A(·) concatenates two lists.

A is generated by Ωc = {[],Add} in Sc = {list}:
Take arbitrary l = [e1, e2, . . . , en] ∈ A(list).
Define Xel := {x1, x2, . . . , xn}.
Define αel := [x1 7→ e1, x2 7→ e2, . . . , xn 7→ en].
Then l = A(α)(Add (x1,Add(x2, . . . ,Add(xn, [])))).

Wolfgang Schreiner http://www.risc.jku.at 20/42

Proofs by Induction

In generated sorts, the principle of structural induction can be applied.

Take the LIST-algebra A of the previous example.
Notation: cA for A(c).
Knowledge: (1) ∀l ∈ listA : []A ·A l = l .

(2) ∀e ∈ elA, l , r ∈ listA :
AddA(e, l) ·A r = AddA(e, l ·A r).

Prove: ∀l ∈ listA : l ·A []A = l .
Induction base l = []A:

l ·A []A = []A ·A []A
(1)
= []A = l .

Induction step l = AddA(e, r) (for some e ∈ elA, r ∈ listA).
Induction Hypothesis (H): r ·A []A = r .
l ·A []A = AddA(e, r) ·A []A

(2)
= AddA(e, r ·A []A)
(H)
= AddA(e, r) = l .

Wolfgang Schreiner http://www.risc.jku.at 21/42

Loose Specifications with Constructors

Take logic L.

Loose specification with constructors sp = (Σ,Φ,Sc ,Ωc) in L:

Signature Σ = (S ,Ω), set of formulas Φ ⊆ L(Σ), generated sorts
Sc ⊆ S , constructors Ωc ⊆ Ω with target sorts in Sc .

Semantics M(sp) = ModU ,Σ(Φ) where

U = {A ∈ Alg(Σ) | A is generated in Sc by Ωc}.
Only generated Σ-algebras are candidates for the specified ADT.

A loose specification with constructors specifies as the ADT the class of
all models of its formula set that are generated by the constructors.

Wolfgang Schreiner http://www.risc.jku.at 22/42

Concrete Syntax

loose spec
sorts [generated] sort . . .
opns [constr] operation . . .
vars variable: sort . . .
axioms formula . . .

endspec

Signature Σ = ({sort , . . .}, {operation, . . .}).
Set of formulas Φ = {(∀variable : sort, formula), . . .}.
Generated sorts Sc = {generated sort, . . .}.
Constructors Ωc = {constr operation, . . .}.

We will only use the concrete syntax to define specifications.

Wolfgang Schreiner http://www.risc.jku.at 23/42

Example

loose spec
sorts el

generated bool
generated list

opns
constr True :→ bool
constr False :→ bool
constr [] :→ list
constr Add : el × list → list
. : list × list → list

vars l ,m : list, e, e1, e2 : el
axioms

¬(True = False)
¬([] = Add(e, l))
Add(e1, l1) = Add(e2, l2) ⇒ e1 = e2
[].l = l
Add(e, l).m = Add(e, l .m)

endspec

Strictly adequate specification of the “classical” list algebra in PL.

Wolfgang Schreiner http://www.risc.jku.at 24/42

Example

loose spec
sorts

generated bool
generated nat

opns
constr True :→ bool
constr False :→ bool
constr 0 :→ nat
constr Succ : nat → nat
+ : nat × nat → nat
∗ : nat × nat → nat
≤ : nat × nat → bool

vars m, n : nat
axioms

¬(True = False)
¬(0 = Succ(n))
Succ(n) = Succ(m) ⇒ n = m
(0 ≤ n) = True
(Succ(n) ≤ 0) = False
(Succ(n) ≤ Succ(m)) = (n ≤ m)
n + 0 = n
n + Succ(m) = Succ(n +m)
n ∗ 0 = 0
n ∗ Succ(m) = n + (n ∗m)

endspec

Strictly adequate specification of Peano arithmetic in PL.

Wolfgang Schreiner http://www.risc.jku.at 25/42

Specified ADT is Strictly Adequate

Proof requires two parts.

Peano arithmetic satisfies the specified axioms.

Can be easily checked.

Specified ADT is monomorphic: ∀B ,C ∈ M(sp) : B ≃ C .
There is an isomorphism h : B → C .

A bijective homomorphism.

Definition of unique term representation for every value.

Simplifies the remainder of the proof.

Definition of bijective mapping h:

By pattern matching on term representation.

Proof that h is a homomorphism:

By using properties expressed with the help of the term representation.

Term representation essential for this kind of proofs.

Wolfgang Schreiner http://www.risc.jku.at 26/42

Values have Unique Term Representations

Take aribitrary A ∈ M(sp).

boolA = {TrueA,FalseA} and TrueA 6= FalseA.

A is generated by {True,False} in bool .
axiom ¬(True = False).

natA = {Succk(0)A : k ∈ N} and ∀k 6= l : Succk(0)A 6= Succ l(0)A.

A is generated by {0, Succ} in nat.

Proof by induction on k : ∀l 6= k : Succk(0)A 6= Succ l(0)A.

k = 0, l 6= 0: 0A 6= Succ l(0)A (by axiom ¬(0 = Succ(n))).
k 6= 0, l 6= k : assume Succk(0)A = Succ l (0)A, show k = l .

Know l 6= 0 (by axiom ¬(0 = Succ(n))).
Thus k = k′ + 1, l = l ′ + 1, it suffices to show k‘ = l ′.
By assumption, Succ(Succk

′
(0))A = Succ(Succ l

′
(0))A.

Thus Succk
′
(0)A = Succ l

′
(0)A (axiom Succ(n) = Succ(m) ⇒ n = m).

By induction hypothesis, k′ = l ′.

Values are uniquely described by constructor applications.

Wolfgang Schreiner http://www.risc.jku.at 27/42

Definition of Bijective Mapping

Take arbitrary B ,C ∈ M(sp).

h is defined by pattern matching on constructor terms:

hbool(TrueB) := TrueC .
hbool(FalseB) := FalseC .
hnat(Succ

k(0)B) = Succk(0)C , for all k ≥ 0.

h is consistently defined:

TrueB and FalseB denote different values.
Succk(0)B denote different values for different k .

h is bijective:

TrueC and FalseC denote different values.
Succk(0)C denote different values for different k .

One-to-one correspondence between the carriers of B and C .

Wolfgang Schreiner http://www.risc.jku.at 28/42

Homomorphism Proof

Clear for constructors True,False, 0,Succ :
Definition of h already expresses homomorphism condition.

Goal: ∀m, n ∈ natB . h(opB(m, n)) = opC (h(m), h(n)).

op . . .+, ∗,≤.

∀k , l ≥ 0 . h(opB(Succ
k(0)B , Succ

l(0)B)) =

opC (h(Succ
k(0)B), h(Succ

l(0)B)).
B and C are generated by {0, Succ} in nat.

∀k , l ≥ 0 . h(opB(Succ
k(0)B , Succ

l(0)B)) =

opC (Succ
k(0)C , Succ

l(0)C).
By definition of h.

∀k , l ≥ 0 . h(op(Succk(0), Succ l(0))B) =

op(Succk(0), Succ l(0))C .
By definition of term semantics.

Proof goal is expressed with the help of constructor terms.
Wolfgang Schreiner http://www.risc.jku.at 29/42

Homomorphism Proof

The core of the homomorphism proof.

Goal: h((Succk(0) + Succ l(0))B) = (Succk(0) + Succ l(0))C .

First simplify left and right hand side of the equation.

Lemma: ∀A ∈ M(sp) : (Succk(0) + Succ l(0))A = Succk+l (0)A.

Induction base l = 0: by axiom n + 0 = n.
Induction step l = l ′ + 1:

(Succk(0) + Succ l
′+1(0))A

= Succ(Succk(0) + Succ l
′
(0))A

= Succ(Succk+l′(0))A
= Succk+l′+1(0)A.

Simplified goal: h(Succk+l (0)B) = Succk+l (0)C .

By definition of h.

Similar for the homomorphism proofs of the other operations.

Wolfgang Schreiner http://www.risc.jku.at 30/42

1. General Remarks

2. Loose Specifications

3. Loose Specifications with Constructors

4. Loose Specifications with Free Constructors

5. Summary

Wolfgang Schreiner http://www.risc.jku.at 31/42

Freely Generated Algebras

Take signature Σ = (S ,Ω), Σ-algebra A.

Define set of operations Ωc ⊆ Ω (the constructors).

Restricted signature Σc = (S ,Ωc).

A is freely generated by Ωc :
For each sort s ∈ S and a ∈ A(s), there exists exactly one ground
term t ∈ TΣc ,s with a = A(t).

Value a can be described by a unique term t that involves only
constructors.

A is freely generated if it is generated by Ω.

A is freely generated by Ωc in Sc :

Analogous definition as for generated by . . . in

Freely generated algebras have unique constructor term representations
for the values of the freely generated sorts (no “junk” in carriers and no
“confusion” among constructor terms).

Wolfgang Schreiner http://www.risc.jku.at 32/42

Example

The “classical” BOOL-algebra ({true , false}, . . .):
Freely generated by {True,False}.
Not freely generated by {True,False,¬}.

The “one-element” BOOL-algebra ({#}, . . .).
Freely generated by {True} and by {False}.
Not freely generated by {True,False}.

The “classical” NAT-algebra (N, . . .):

Freely generated by {0, Succ}.
Not freely generated by {0, Succ,+}.

The “classical” INT-algebra (Z, . . .):
INT = (int, {0 :→ int, Succ : int → int,Pred : int → int}).
Not freely generated by (any subset of) operations.

A set of free constructors cannot be extended.

Wolfgang Schreiner http://www.risc.jku.at 33/42

Inductive Function Definitions

Freely generated algebras allow inductive function definitions.

Signature LIST = (S ,Ω):

S = {el , list}.
Ω = {[] :→ list,Add : el × list → list, · : list × list → list}.

Classical LIST-algebra A as in the previous example.

A is freely generated by Ωc = {[],Add} in Sc = {list}:
Inductive definition of function g : A(list) → N.

g([]A) = 0.
g(Add(x , t)A) = g(tA) + 1 for all x ∈ X , t ∈ TΣc (X),list.

Inductive definition by “pattern matching” on constructor terms
(independent of the nature of the carrier).

Wolfgang Schreiner http://www.risc.jku.at 34/42

Loose Specifications with Free Constructors

Take logic L.

Loose specification with free constructors sp = (Σ,Φ,Sc ,Ωc) in L:

Signature Σ = (S ,Ω), set of formulas Φ ⊆ L(Σ), freely generated
sorts Sc ⊆ S , constructors Ωc ⊆ Ω with target sorts in Sc .

Semantics M(sp) = ModU ,Σ(Φ) where

U = {A ∈ Alg(Σ) | A is freely generated in Sc by Ωc}.
Only freely generated Σ-algebras are candidates for the specified ADT.

A loose specification with free constructors specifies the class of all
models of its formula set that are freely generated by the constructors.

Wolfgang Schreiner http://www.risc.jku.at 35/42

Concrete Syntax

loose spec
sorts [freely generated] sort . . .
opns [constr] operation . . .
vars variable: sort . . .
axioms formula . . .

endspec

Signature Σ = ({sort , . . .}, {operation, . . .}).
Set of formulas Φ = {(∀variable : sort, formula), . . .}.
Generated sorts Sc = {freely generated sort, . . .}.
Constructors Ωc = {constr operation, . . .}.

Also mixing of generated sorts with freely generated sorts possible.

Wolfgang Schreiner http://www.risc.jku.at 36/42

Example

loose spec
sorts el

freely generated bool
freely generated list

opns
constr True :→ bool
constr False :→ bool
constr [] :→ list
constr Add : el × list → list
. : list × list → list

vars l ,m : list, e, e1, e2 : el
axioms

[].l = l
Add(e, l).m = Add(e, l .m)

endspec

Strictly adequate specification of the “classical” list algebra in EL; the
non-constructor operation is inductively defined.

Wolfgang Schreiner http://www.risc.jku.at 37/42

Example

loose spec
sorts

freely generated bool
freely generated nat

opns
constr True :→ bool
constr False :→ bool
constr 0 :→ nat
constr Succ : nat → nat
+ : nat × nat → nat
∗ : nat × nat → nat
≤ : nat × nat → bool

vars m, n : nat
axioms

(0 ≤ n) = True
(Succ(n) ≤ 0) = False
(Succ(n) ≤ Succ(m)) = (n ≤ m)
n + 0 = n
n + Succ(m) = Succ(n +m)
n ∗ 0 = 0
n ∗ Succ(m) = n + (n ∗m)

endspec

Strictly adequate specification of the “classical” list algebra in EL; the
non-constructor operations are inductively defined.

Wolfgang Schreiner http://www.risc.jku.at 38/42

1. General Remarks

2. Loose Specifications

3. Loose Specifications with Constructors

4. Loose Specifications with Free Constructors

5. Summary

Wolfgang Schreiner http://www.risc.jku.at 39/42

Summary

A couple of core messages. . .

A loose specification describes a class of models as an ADT.

To check whether a given algebra implements the specification
(i.e., whether it is an element of the specified ADT):

Check whether the algebra satisfies the specification axioms.

There may exist “confusion” among terms.

Carriers may collapse to singletons (or be too “small”).
In PL, additional axioms can prevent this.
Non-equalities of operation results (injectiveness of operations).

Carriers may contain “junk”.

In PL, an additional axiom can prevent this for a finite carrier.
Axiom enumerates constants that denote all s of the sort.

Without constructors, loose specifications are generally clumsy because
many “boring” axioms are needed.

Wolfgang Schreiner http://www.risc.jku.at 40/42

Summary (Contd)

Loose specifications with constructors.
Every value is denoted by some constructor term.
Thus junk is removed from (also infinite) carriers.
Induction proofs on term representation of s become possible.
Problem: not all carriers allow term representations.

ADT “real” (carrier is not countable).

Loose specifications with free constructors.
Every value is denoted by exactly one constructor term.
Thus there is no “confusion” among constructor terms and the
collapse of carriers is prevented.
Inductive function definitions by pattern matching on term
representations of s become possible.
Problem: not all carriers have unique term representations.

ADT “set” (no unique representation at all).
ADT “integer” (unique representation is unconvient).

With constructors, loose specifications become easy to use.
Wolfgang Schreiner http://www.risc.jku.at 41/42

Summary (Contd)

So what is the role of loose specifications. . .

Loose specifications are good for specifying requirements.

May specify zero, one, many datatypes (polymorphic ADTs).
Thus allow arbitrarily many implementations.

A loose specification may not have any model (implementation) at all!

Specification axioms can (should) be abstract.

Later verification that concrete implementation satisfies the axioms.

Loose specifications are not good for specifying designs.

Not descriptions of concrete algorithms/implementations.

Loose specifications are generally not executable.

No engines to execute loose specifications for rapid prototyping.

Loose specifications are for reasoning, not for executing; they are the
basis of program specification languages such as Larch/C++.

Wolfgang Schreiner http://www.risc.jku.at 42/42

