37

38

39

40

36

Problems Solved:

Name:

Matrikel-Nr.:

Problem 36. Let

$$Y := (\lambda f.((\lambda x.(f(xx)))(\lambda x.(f(xx))))).$$

(just as in Section 3.2 of the Lecture Notes). Show by an explicit derivation that

 $(YF) \rightarrow^* (F(YF)).$

Problem 37. True or false?

- 1. $(2n+3)(3n+2) = O(n^2)$
- 2. $(2n+3) + \log_2(3n^6+2) = O(n)$
- 3. $\frac{1024}{2^n} = O(1)$
- 4. $\frac{1024}{2^n} = \Theta(\log_2(n))$
- 5. $4^n = O(2^n)$
- 6. $2^n = O(4^n)$

Prove your answers based on Definition 45 from the lecture notes.

Problem 38. Let $f, g, h : \mathbb{N} \to \mathbb{R}_{\geq 0}$. Prove or disprove based on Definition 45 from the lecture notes.

- 1. f(n) = O(f(n))
- 2. $f(n) = O(g(n)) \implies g(n) = O(f(n))$
- 3. $f(n) = O(g(n)) \land g(n) = O(h(n)) \implies f(n) = O(h(n))$

Problem 39. Write a LOOP program that computes the function $f : \mathbb{N} \to \mathbb{N}$, $f(n) = 2^n$.

- 1. Count the number of variable assignments (depending on n) during the execution of your LOOP program with input n.
- 2. What is the time complexity of your program (depending on n)?
- 3. Is it possible to write a LOOP program with time complexity better than $O(2^n)$? Give an informal reasoning of your answer.
- 4. Let l(k) denote the bit length of a number $k \in \mathbb{N}$. Let b = l(n), i.e., b denotes the bit length of the input. What is the time complexity of your program depending on b, if every variable assignment $x_i := x_j + 1$ costs time $O(l(x_j))$?

Berechenbarkeit und Komplexität, WS2015

Problem 40. Let $\Sigma = \{0,1\}$ and let $L \subseteq \Sigma^*$ be the set of binary numbers divisible by 3, i.e.,

$$L = \{x_n \dots x_1 x_0 : 3 \text{ divides } \sum_{k=0}^n x_k 2^k\}.$$

(By convention, the empty string ε denotes the number 0 and so it is in L too.)

- 1. Design a Turing machine M with input alphabet Σ which recognizes L, halts on every input, and has (worst-case) time complexity T(n) = n. Write down your machine formally. (A picture is not needed.) *Hint:* Three states q_0, q_1, q_2 suffice. The machine is in state q_r if the bits read so far yield a binary number which leaves a remainder of r upon division by 3. The transition from one state to another represents a multiplication by 2 and the addition of 0 or 1.
- 2. Determine S(n), $\overline{T}(n)$ and $\overline{S}(n)$ for your Turing machine.
- 3. Is there some faster Turing machine that achieves $\overline{T}(n) < n$? (Justify your answer.)