
Formal Methods in Software Development
Exercise 1 (October 14)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

September 18, 2015

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name and email address,

• the deliverables requested in the description of the exercise,

2. the JML-annotated Java files developed in the exercise.

Email submissions are not accepted.

1



Exercise 7: Checking JML Specifications

Annotate each method given in the files Exercise1a.java and Exercise1b.java by JML
specifications the JML heavy-weight format using by a precondition (requires), frame condi-
tion (assignable), and postcondition (ensures). Additionally, give each class a main function
that allows you to test the implementation by calls of the corresponding method.

Make preconditions as weak as possible; e.g. if the method can be reasonably applied to argu-
ment 0, do not require that the argument needs to be positive. Make postconditions as strong
as possible; e.g. if a result is always positive, do not just ensure that the result is non-negative.
Also do not forget to explicitly specify the null/non-null status and the lengths of arrays.

For each method, first use javac to compile the program (to make sure that it is syntactically
correct and has no type errors) and then use jml to type-check the specification.

Second, use the runtime assertion compiler jmlc and the executor jmlrac to validate the speci-
fication respectively implementation by at least three calls of each method; the calls shall contain
at least two different valid inputs and (if possible) also one invalid input (for arrays, use arrays
with wrong length or content, not just null pointers). Please print after each method call some
output to make sure that the method has not silently crashed. You may also try the alternative
tool set openjmlrac/openjmlrun; please report your experience with this. If you detect that
the runtime assertion compiler fails for some part of the specification, you may comment it out
as an informal property (* ...*) and repeat the check with the simplified specification.

Third, use the extended static checker escjava2 to further validate the code; use the option
-NoCautions to suppress any cautions you may get from system libraries. You may also try the
alternative extended static checker openjmlesc (please report your experience).

The deliverables of this exercise consist of

• a nicely formatted copy of the JML-annotated Java code for each class,

• the output of running jml -Q on the class,

• the output(s) of running jmlrac/openjmlrun on the class,

• the output of running escjava2/openjmlesc on the class.

both for the original and for the modified implementation of the method (if the implementation
was modified) including an explanation of the detected error and how you fixed it.

Please note that the fact that escjava2/openjmlesc does not give a warning does not prove that
the function indeed satisfies the specification (only that the tool could not find a violation); on
the other hand, if the checker reports a warning, this does not necessarily mean that the program
indeed violates its specification (only that the tool could not verify its correctness).

Recommendation: it is better to split pre/post-conditions that form conjunctions into multiple
requires respectively ensure clauses (one for each formula of the conjunction); if an error is
reported, it is then clear, to which formula it refers.

2


