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The Language of Logic .§ |(.

Two kinds of syntactic phrases.

Term T denoting an object.
Variable x
Object constant ¢
Function application f(Ty,..., T,) (may be written infix)
n-ary function constant f
Formula F denoting a truth value.
Atomic formula p(T1, ..., T,) (may be written infix)
n-ary predicate constant p.
Negation =F (“not F")
Conjunction Fy A Fp ("Fp and ")
Disjunction F1 V F» (“F1 or F>")
Implication F1 = F, (“if F1, then F")
Equivalence F1 < F, (“if F1, then Fp, and vice versa")
Universal quantification Vx : F (“for all x, F")
Existential quantification 3x : F (“for some x, F")
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Syntactic Shortcuts %

VX1, .o Xp  F
Vxy i Vx, F
dx1,...,x, 0 F
Ixy ... 3x,  F
VxeS:F
Vx:xeS=F
dxeS:F
dx:x€SAF

Help to make formulas more readable.
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Examples N4

Terms and formulas may appear in various syntactic forms.

Terms:
exp(x)
a-b+1
ali]- b

x242x+1
(y+1)?

Formulas:
P +bp=c
n|2n
VxeN: x>0
Vx € N:2|xV2|(x+1)
VxeN,yeN:x<y=
dJzeN:x+z=y

Terms and formulas may be nested arbitrarily deeply.
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The Meaning of Formulas '& I(.

Atomic formula p(Ty,..., Tp)
True if the predicate denoted by p holds for the values of T1,..., T,.
Negation —F
True if and only if F is false.
Conjunction F1 A Fp (“F1 and ")
True if and only if F; and F; are both true.
Disjunction F1 V F, (“F1 or Fp")
True if and only if at least one of F; or F; is true.
Implication F; = F, ("“if F1, then ")
False if and only if F; is true and F; is false.
Equivalence F; < F, ("“if F1, then F,, and vice versa")
True if and only if F; and F; are both true or both false.
Universal quantification Vx : F (“for all x, F")
True if and only if F is true for every possible value assignment of x.
Existential quantification Ix : F (“for some x, F")
True if and only if F is true for at least one value assignment of x.
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Example \ ¢

We assume the domain of natural numbers and the “classical”
interpretation of constants 1, 2, +, =, <.
1+41=2
True.
1+41=2Vv2+42=2
True.
1+41=2A242=2
False.
1+1=2=2=1+1
True.
1+41=1=24+2=2
True.
1+41=2=24+2=2
False.
1+41=124+2=2
True.
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Example v

x+1=1+4+x

True, for every assignment of a number a to variable x.
Vx:x+1=14+x

True (because for every assignment a to x, x +1 =1+ x is true).
x+1=2

If x is assigned “one”, the formula is true.

If x is assigned “two", the formula is false.

Ixix+1=2

True (because x + 1 = 2 is true for assignment “one” to x).
Ux:ix+1=2

False (because x + 1 = 2 is false for assignment “two” to x).
Vx:dy 1 x<y

True (because for every assignment a to x, there exists the
assignment a+ 1 to y which makes x < y true).

dy:Vx:x<y
False (because for every assignment a to y, there is the assignment

a+ 1 to x which makes x < y false).
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Formula Equivalences .ﬁ l(.

Formulas may be replaced by equivalent formulas.
Fp e By
—(FL A Fp) e =F1V —F
—(FLV F) e mFL N =R
—(FL= F) e FL A—F
—Vx: F e~ dx:oF
—3x i F evs Vx o oF
F1 = Fy e =Fy = —F
Fi=Fes-FVHA
F1 & F e =F & -k

Familiarity with manipulation of formulas is important.
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Example v

“All swans are white or black.”
Vx : swan(x) = white(x) V black(x)
“There exists a black swan.”
3x : swan(x) A black(x).
“A swan is white, unless it is black."”
Vx : swan(x) A —black(x) = white(x)
Vx : swan(x) A —white(x) = black(x)
Vx : swan(x) = white(x) V black(x)
“Not everything that is white or black is a swan.”
—Vx : white(x) V black(x) = swan(x).
Ix : (white(x) V black(x)) A —swan(x).
“Black swans have at least one black parent”.
Vx : swan(x) A black(x) = 3y : swan(y) A black(y) A parent(y, x)

It is important to recognize the logical structure of an informal sentence

in its various equivalent forms.
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The Usage of Formulas %

Precise formulation of statements describing object relationships.

Statement:
If x and y are natural numbers and y is not zero, then ¢ is the
truncated quotient of x divided by y.
Formula:
xENAyeNAy #0=
geENATreN:r<yAx=y-qg+r
Problem specification:

Given natural numbers x and y such that y is not zero, compute
the truncated quotient g of x divided by y.

Inputs: x,y

Input condition: x e NAy e NAy #0

Output: g

Output condition: g e NAIreN:r<yAx=y-qg+r
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Problem Specifications ) *
N\,
The specification of a computation problem:
Input: variables x; € 51,...,x, € S,
Input condition: formula /(x, ..., Xp).

Output: variables y; € T1,...,ym € T,

Output condition: formula O(x1,..., X, Y1,- -+ Ym)-
F(x1,...,%n): only xi,...,x, are free in F.
x is free in F, if not every occurrence of x is inside the scope of a
quantifier (such as V or 3) that binds x.

An implementation of the specification:
A function (program) f : Sy x ... x S, = Ty X ... X T, such that
Vx1 € S1yevoyXn € Sy (X1, ..y x0) =
let (y1,...,¥m) = f(x1,...,%,) in
O(X1, -+ s Xny Y1y« s Ym)
For all arguments that satisfy the input condition, f must compute
results that satisfy the output condition.

Basis of all specification formalisms.
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L o/
Example: A Problem Specification .E I{‘

Given an integer array a, a position p in a, and a length /, return the
array b derived from a by removing a[p], ..., a[p + /].

Input: a€e Z*, pe N, €N
Input condition:
p+ | <length,(a)
Output: be Z*
Output condition:
let n = lengthy(a) in
length,(b) =n—1 A
(VieN:i<p= b[i]=a[i]) A
(VieN:p<i<n—1I=b[i]=ali+]])
Mathematical theory:
T =Uen T T =N = T,N; == {neN:n<i}
lengths : T* — N, length(a) =such i € N:a€ T’

Wolfgang Schreiner http://www.risc.jku.at 13/45



o I 7\
Validating Problem Specifications .E l(.

Given a problem specification with input condition /(x) and output
condition O(x,y).
Correctness: take some legal input(s) a with legal output(s) b.
Check that /(a) and O(a, b) indeed hold.
Falseness: take some legal input(s) a with illegal output(s) b.
Check that /(a) holds and O(a, b) does not hold.
Satisfiability: every legal input should have some legal output.
Check Vx : I(x) = Jy : O(x,y).
Non-triviality: for every legal input not every output should be legal.
Check Vx : I(x) = 3y : =0(x, y).

A formal specification does not necessarily capture our intention!
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Proofs .E <

A proof is a structured argument that a formula is true.
A tree whose nodes represent proof situations (states).

N / N s
N e

o
Each proof situation consists of knowledge and a goal.
e Ki,...,KhF G
Knowledge Ki, ..., K,: formulas assumed to be true.
Goal G: formula to be proved relative to knowledge.

The root of the tree is the initial proof situation.

Ki, ..., K,: axioms of mathematical background theories.
G: formula to be proved.
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Y
Proof Rules .E l(.

A proof rules describes how a proof situation can be reduced to zero,
one, or more “subsituations”.

A R
K. K, FG

Rule may or may not close the (sub)proof:

Zero subsituations: G has been proved, (sub)proof is closed.
One or more subsituations: G is proved, if all subgoals are proved.

Top-down rules: focus on G.
G is decomposed into simpler goals Gi, Gy, ...
Bottom-up rules: focus on Ki,..., K,.
Knowledge is extended to K1, ..., Ky, Kpi1.

In each proof situation, we aim at showing that the goal is “apparently”
true with respect to the given knowledge.
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Conjunction F{ A F, W

KF G KE G L KINKy K Ko E G
KE G A Gy L KiANKEG

Goal G; A Gy.
Create two subsituations with goals G; and G;.
We have to show Gi A Go.

We show Gi: ... (proof continues with goal Gi)
We show Ga: ... (proof continues with goal G;)

Knowledge K1 A K>.
Create one subsituation with K7 and K; in knowledge.

We know K1 N\ K. We thus also know K; and Ks.
(proof continues with current goal and additional
knowledge K1 and K3)
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Disjunction F V F, * *
%
K,~G F G, L KiFG L K G
KF GV G L KiVKa - G
Goal Gy V Gy.

Create one subsituation where G; is proved under the assumption

that G; does not hold (or vice versa):
We have to show G V Gy. We assume =Gy and show Go.
(proof continues with goal G, and additional knowledge
-Gy)

Knowledge K1 V K>.

Create two subsituations, one with K7 and one with K3 in knowledge.

We know K1 V K. We thus proceed by case distinction:

Case Ki: ... (proof continues with current goal and additional
knowledge Ki).
Case Ka: ... (proof continues with current goal and additional

knowledge K> ).
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Implication F, = F, .E
[ )
K,G F G L FKL . Ko G
KF G = G . Ki= Kk G
Goal Glé G2

Create one subsituation where G; is proved under the assumption
that G; holds:
We have to show G; = G,. We assume Gy and show G;.
(proof continues with goal G, and additional knowledge G;)
Knowledge K1 = K3
Create two subsituations, one with goal K; and one with
knowledge K.
We know K; = Ko.

We show Ki: ... (proof continues with goal K1)
We know K: ... (proof continues with current goal and
additional knowledge K> ).
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Equivalence F; & F; K *
i
Kk G = G KFEG=G L ()K (MK EG
KFG & G ...,K1<:>K2|—G
Goal G1<:> G2

Create two subsituations with implications in both directions as goals:
We have to show Gi < Go.
We show Gy = Gy: ... (proof continues with goal G1 = G;)
We show G; = Gi: ... (proof continues with goal Gz = Gy)
Knowledge K1 & K>
Create two subsituations, one with goal (—)K; and one with
knowledge (—)K .
We know K; < K.

We show (—)Ki: ... (proof continues with goal (—)K1)
We know (—)Ka: ... (proof continues with current goal and
additional knowledge (—)Kz)
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Universal Quantification Vx : F W

K F Glxo/x]
KEVx:G

LXK K[T/XIE G
LY KEG

(xo new for K, G)

Goal Vx : G

Introduce new (arbitrarily named) constant xo and create one
subsituation with goal G[xo/x].
We have to show Vx : G. Take arbitrary xg.
We show G[xo/x]. (proof continues with goal G[xp/x])
Knowledge Vx : K
Choose term T to create one subsituation with formula K[T /x]
added to the knowledge.

We know Vx : K and thus also K[T /x].
(proof continues with current goal and additional
knowledge K[T /x])
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Existential Quantification 3x : F .E <
(]
Ko S e k0)
Goal Ix: G
Choose term T to create one subsituation with goal G[T /x].
We have to show 3x : G. It suffices to show G[T /x].
(proof continues with goal G[T /x])
Knowledge dx : K
Introduce new (arbitrarily named constant) xp and create one
subsituation with additional knowledge K{[xo/x].
We know 3x : K. Let xq be such that K[xo/x].
(proof continues with current goal and additional
knowledge K[xo/x])
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Example

We show
(a) (3x :Vy : P(x,y)) = (Vy : 3x : P(x,y))
We assume
(1) Ix : Yy : P(x,y)
and show
(b) Vy : Ix : P(x,y)
Take arbitrary yo. We show
(c) Ix : P(x, yo)
From (1) we know for some xo
(2) vy : P(x0,¥)
From (2) we know
(3) P(x0,0)
From (3), we know (c). QED.
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Example Y

We show
(@) (@x: p(x)) A (Vx 2 p(x) = Ty 1 q(x,¥)) = (3x,y : a(x, )
We assume
(1) (3x: p(x)) A (Yx : p(x) = Ty = q(x, )
and show
(b) 3x,y = a(x,y)
From (1), we know

(2) 3x: p(x)
(3) Vx: p(x) = 3y : q(x,y)

From (2) we know for some xo

(4) p(x0)
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Example (Contd) 2

i:.r.om (3), we know
(5) p(x0) = Jy = a(>0, )
From (4) and (5), we know
(6) 3y = a0, )
From (6), we know for some yo

(7) a(x0, y0)
From (7), we know (b). QED.
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Indirect Proofs 5 *
i
K,—G F false K,-GFF K,-GF-F .., GE=K
KFG KFG ..., KFG
Add =G to the knowledge and show a contradiction.
Prove that “false” is true.
Prove that a formula F is true and also prove that it is false.
Prove that some knowledge K is false, i.e. that =K is true.
Switches goal G and knowledge K (negating both).
Sometimes simpler than a direct proof.
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Example .E {’
We show

(a) Bx:Vy: P(x,y)) = (Vy : 3x: P(x,y))
We assume

(1) 3x :Vy : P(x,y)
and show

(b) Vy : Ix : P(x,y)
We assume

(2) =Vy : 3x : P(x,y)

and show a contradiction.
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Example

i:.r.om (2), we know
(3) y : Vx: =P(x,y)
Let yo be such that
(4) Vx : =P(x, y0)
From (1) we know for some xo
(8) Vy : P(x0,¥)
From (5) we know
(6) P(x0,0)
From (4), we know
(7) =P (>0, y0)
From (6) and (7), we have a contradiction. QED.
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