
Formal Methods in Software Development
Exercise 1 (November 2)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

August 6, 2015

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• a section for each part of the exercise with the requested deliverables and

• a (nicely formatted) copy of the ProofNavigator file,

• for each proof of a formula F, a readable screenshot of the RISC ProofNavigator
after executing the command proof F,

• an explicit statement whether the proof succeeded,

• optionally any explanations or comments you would like to make;

2. the RISC ProofNavigator (.pn) file(s) used in the exercise;

3. the proof directories generated by the RISC ProofNavigator.

Email submissions are not accepted.

1



Exercise 1a: Computer-Supported Predicate Logic Proofs

(30P) Take the file “exercise1a.pn” and use the RISC ProofNavigator to prove the formulas A,
B, and C in this file.

The proofs only require the commands scatter, split, and instantiate. The proof of
formula C is essentially a “proof by contradiction”; here the command flip can be used to
introduce the negation of the goal as an assumption.

For developing the proofs, you may also try auto; the submitted proofs, however, must not make
use of the auto command. Please also try the repeated application of the command flatten
(rather than scatter) to see the gradual decomposition of the proof.

Exercise 1b: Formalizing and Proving

(30P) Develop in the RISC ProofNavigator a theory that formalizes each of the following state-
ments F1, F2, F3 as a boolean constant

1. If there are any taxpayers, then all politicians are taxpayers.

2. If there are any philanthropists, then all tax payers are philantropists.

3. So, if there are any tax-paying philanthropists, then all politicians are philanthropists.

For instance, F1 requires a definition

F1: BOOLEAN = ...;

To write the corresponding definitions, first introduce an undefined type T of objects

T: TYPE;

and, for each required property, an atomic predicate on T , e.g.,

taxpayer: T->BOOLEAN;

You can then denote by the atomic formula taxpayer(x) the statement “x is a taxpayer”.

Finally, define a formula

F: FORMULA F1 AND F2 => F3;

and prove it with the same restrictions as in Exercise 1a (the submitted result must not contain
applications of command auto).

In addition to the commands needed for Exercise 1a, you also need the command expand; for
easier intuition, you may apply the command goal to exchange the goal formula.

2



Exercise 1c: Deriving and Proving Verification Conditions

(40P) Derive verification conditions for the Hoare triple

{a = olda ∧ b = oldb ∧ x = oldx}

s = 0; i = 1;
if (a == x) { s = s+i; }
i = i+1;
if (b == x) { s = s+i; }
i = i+1;




a = olda ∧ b = oldb ∧ x = oldx ∧
(a , x ∧ b , x ⇒ s = 0) ∧ (a = x ∧ b , x ⇒ s = 1) ∧
(a , x ∧ b = x ⇒ s = 2) ∧ (a = x ∧ b = x ⇒ s = 3)




i.e. one or more plain logic formulas whose validity implies the correctness of the Hoare triple.

Show each step of the derivation (not only the derived conditions). Do not try to “guess” the
condition(s) but derive them by application of the Hoare axioms respectively of the predicate
transformer calculus. Only such solutions will be rewarded!

Formalize the conditions in the RISC ProofNavigator (declaring constants a:INT, olda:INT,
etc) and prove them.

Hint: when applying the plain Hoare axioms, you have to invent an appropriate assertion before
each statement above (this might be tricky for the second conditional statement). When applying
the predicate transformer calculus, these conditions can be derived mechanically.

3


