

Logic and Proving

Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

Wolfgang Schreiner http://www.risc.jku.at

1/45

Wolfgang Schreiner

http://www.risc.jku.at

2/45

The Language of Logic

Two kinds of syntactic phrases.

- Term T denoting an object.
 - Variable x
 - Object constant c
 - Function application $f(T_1, ..., T_n)$ (may be written infix) n-ary function constant f
- Formula *F* denoting a truth value.
 - Atomic formula $p(T_1, ..., T_n)$ (may be written infix) n-ary predicate constant p.
 - Negation $\neg F$ ("not F")
 - Conjunction $F_1 \wedge F_2$ (" F_1 and F_2 ")
 - Disjunction $F_1 \vee F_2$ (" F_1 or F_2 ")
 - Implication $F_1 \Rightarrow F_2$ ("if F_1 , then F_2 ")
 - Equivalence $F_1 \Leftrightarrow F_2$ ("if F_1 , then F_2 , and vice versa")
 - Universal quantification $\forall x : F$ ("for all x, F")
 - Existential quantification $\exists x : F$ ("for some x, F")

1. The Language of Logic

3. The RISC ProofNavigator

2. The Art of Proving

- Syntactic Shortcuts
 - $\forall x_1, \dots, x_n : F$ $\forall x_1 : \dots : \forall x_n : F$
 - $\exists x_1,\ldots,x_n:F$
 - $\exists x_1 : \ldots : \exists x_n : F$
 - $\forall x \in S : F$
 - $\forall x : x \in S \Rightarrow F$
 - $\exists x \in S : F$
 - $\exists x : x \in S \land F$

Help to make formulas more readable.

Examples

Terms and formulas may appear in various syntactic forms.

■ Terms:

$$\exp(x)$$

$$a \cdot b + 1$$

$$a[i] \cdot b$$

$$\sqrt{\frac{x^2 + 2x + 1}{(y+1)^2}}$$

■ Formulas:

$$a^{2} + b^{2} = c^{2}$$

$$n \mid 2n$$

$$\forall x \in \mathbb{N} : x \geq 0$$

$$\forall x \in \mathbb{N} : 2|x \vee 2|(x+1)$$

$$\forall x \in \mathbb{N}, y \in \mathbb{N} : x < y \Rightarrow$$

$$\exists z \in \mathbb{N} : x + z = y$$

Terms and formulas may be nested arbitrarily deeply.

Wolfgang Schreiner

http://www.risc.jku.at

5/45

7/45

Example

We assume the domain of natural numbers and the "classical" interpretation of constants 1, 2, +, =, <.

- 1+1=2
 - True.
- $1+1=2 \lor 2+2=2$
 - True.
- $1+1=2 \land 2+2=2$
 - False.
- $1+1=2 \Rightarrow 2=1+1$
 - True.
- $1+1=1 \Rightarrow 2+2=2$
 - True.
- $1+1=2 \Rightarrow 2+2=2$
 - False.

True.

Wolfgang Schreiner

http://www.risc.jku.at

The Meaning of Formulas

- Atomic formula $p(T_1, \ldots, T_n)$
 - True if the predicate denoted by p holds for the values of T_1, \ldots, T_n .
- Negation $\neg F$
 - True if and only if F is false.
- Conjunction $F_1 \wedge F_2$ (" F_1 and F_2 ")
 - True if and only if F_1 and F_2 are both true.
- Disjunction $F_1 \vee F_2$ (" F_1 or F_2 ")
 - True if and only if at least one of F_1 or F_2 is true.
- Implication $F_1 \Rightarrow F_2$ ("if F_1 , then F_2 ")
 - False if and only if F_1 is true and F_2 is false.
- Equivalence $F_1 \Leftrightarrow F_2$ ("if F_1 , then F_2 , and vice versa")
 - True if and only if F_1 and F_2 are both true or both false.
- Universal quantification $\forall x : F$ ("for all x, F")
 - \blacksquare True if and only if F is true for every possible value assignment of x.
- Existential quantification $\exists x : F \text{ ("for some } x, F")$
 - \blacksquare True if and only if F is true for at least one value assignment of x.

Wolfgang Schreiner

http://www.risc.jku.at

6/45

8/45

Example

- x + 1 = 1 + x
 - True, for every assignment of a number a to variable x.
- $\forall x : x + 1 = 1 + x$
 - True (because for every assignment a to x, x + 1 = 1 + x is true).
- x + 1 = 2
 - If x is assigned "one", the formula is true.
 - If x is assigned "two", the formula is false.
- $\exists x : x + 1 = 2$
 - True (because x + 1 = 2 is true for assignment "one" to x).
- $\forall x : x + 1 = 2$
 - False (because x + 1 = 2 is false for assignment "two" to x).
- $\forall x : \exists y : x < y$
 - True (because for every assignment a to x, there exists the assignment a+1 to y which makes x < y true).
- $\exists y : \forall x : x < y$
 - False (because for every assignment a to y, there is the assignment a+1 to x which makes x < y false).

Formula Equivalences

Formulas may be replaced by equivalent formulas.

- $\neg \neg F_1 \leftrightsquigarrow F_1$
- $\neg (F_1 \land F_2) \leftrightsquigarrow \neg F_1 \lor \neg F_2$
- $\neg (F_1 \lor F_2) \leftrightsquigarrow \neg F_1 \land \neg F_2$
- $\neg (F_1 \Rightarrow F_2) \iff F_1 \land \neg F_2$
- $\neg \forall x : F \iff \exists x : \neg F$
- $\neg \exists x : F \iff \forall x : \neg F$
- $\blacksquare F_1 \Rightarrow F_2 \leftrightsquigarrow \neg F_2 \Rightarrow \neg F_1$
- $F_1 \Rightarrow F_2 \leftrightarrow \neg F_1 \lor F_2$
- $\blacksquare F_1 \Leftrightarrow F_2 \leftrightsquigarrow \neg F_1 \Leftrightarrow \neg F_2$
-

Familiarity with manipulation of formulas is important.

Wolfgang Schreiner

http://www.risc.jku.at

9/45

11/45

The Usage of Formulas

Precise formulation of statements describing object relationships.

Statement:

If x and y are natural numbers and y is not zero, then q is the truncated quotient of x divided by y.

Formula:

Wolfgang Schreiner

$$x \in \mathbb{N} \land y \in \mathbb{N} \land y \neq 0 \Rightarrow$$

 $q \in \mathbb{N} \land \exists r \in \mathbb{N} : r < y \land x = y \cdot q + r$

■ Problem specification:

Given natural numbers x and y such that y is not zero, compute the truncated quotient q of x divided by y.

- Inputs: x, y
- Input condition: $x \in \mathbb{N} \land y \in \mathbb{N} \land y \neq 0$
- Output: q
- Output condition: $q \in \mathbb{N} \land \exists r \in \mathbb{N} : r < y \land x = y \cdot q + r$

http://www.risc.iku.at

Example

- "All swans are white or black."
 - $\forall x : swan(x) \Rightarrow white(x) \lor black(x)$
- "There exists a black swan."
 - $\exists x : swan(x) \land black(x).$
- "A swan is white, unless it is black."
 - $\forall x : swan(x) \land \neg black(x) \Rightarrow white(x)$
 - $\forall x : swan(x) \land \neg white(x) \Rightarrow black(x)$
 - $\forall x : swan(x) \Rightarrow white(x) \lor black(x)$
- "Not everything that is white or black is a swan."
 - $\neg \forall x : white(x) \lor black(x) \Rightarrow swan(x).$
 - $\exists x : (white(x) \lor black(x)) \land \neg swan(x).$
- "Black swans have at least one black parent".
 - $\forall x : swan(x) \land black(x) \Rightarrow \exists y : swan(y) \land black(y) \land parent(y, x)$

It is important to recognize the logical structure of an informal sentence in its various equivalent forms.

Wolfgang Schreiner http://www.risc.jku.at

10/45

Problem Specifications

- The specification of a computation problem:
 - Input: variables $x_1 \in S_1, ..., x_n \in S_n$
 - Input condition: formula $I(x_1, \ldots, x_n)$.
 - Output: variables $y_1 \in T_1, \dots, y_m \in T_n$
 - Output condition: formula $O(x_1, \ldots, x_n, y_1, \ldots, y_m)$.
 - $F(x_1,\ldots,x_n)$: only x_1,\ldots,x_n are free in F.
 - \blacksquare x is free in F, if not every occurrence of x is inside the scope of a quantifier (such as \forall or \exists) that binds x.
- An implementation of the specification:
 - \blacksquare A function (program) $f:S_1\times\ldots\times S_n\to T_1\times\ldots\times T_m$ such that

$$\forall x_1 \in S_1, \dots, x_n \in S_n : I(x_1, \dots, x_n) \Rightarrow$$

$$let (y_1, \dots, y_m) = f(x_1, \dots, x_n) in$$

$$O(x_1, \dots, x_n, y_1, \dots, y_m)$$

■ For all arguments that satisfy the input condition, *f* must compute results that satisfy the output condition.

Basis of all specification formalisms.

Example: A Problem Specification

Given an integer array a, a position p in a, and a length l, return the array b derived from a by removing $a[p], \ldots, a[p+l]$.

- Input: $a \in \mathbb{Z}^*$, $p \in \mathbb{N}$, $I \in \mathbb{N}$
- Input condition:

$$p + l \leq \operatorname{length}_{\mathbb{Z}}(a)$$

- Output: $b \in \mathbb{Z}^*$
- Output condition:

let
$$n = \text{length}_{\mathbb{Z}}(a)$$
 in $\text{length}_{\mathbb{Z}}(b) = n - l \land (\forall i \in \mathbb{N} : i$

Mathematical theory:

$$T^* := \bigcup_{i \in \mathbb{N}} T^i, T^i := \mathbb{N}_i \to T, \mathbb{N}_i := \{n \in \mathbb{N} : n < i\}$$

 $length_T : T^* \to \mathbb{N}, length_T(a) = such \ i \in \mathbb{N} : a \in T^i$

Wolfgang Schreiner http://www.risc.jku.at 13/45

- 1. The Language of Logic
- 2. The Art of Proving
- 3. The RISC ProofNavigator

Validating Problem Specifications

Given a problem specification with input condition I(x) and output condition O(x, y).

- Correctness: take some legal input(s) a with legal output(s) b.
 - Check that I(a) and O(a, b) indeed hold.
- Falseness: take some legal input(s) a with illegal output(s) b.
 - Check that I(a) holds and O(a, b) does not hold.
- Satisfiability: every legal input should have some legal output.
 - Check $\forall x : I(x) \Rightarrow \exists y : O(x, y)$.
- Non-triviality: for every legal input not every output should be legal.
 - Check $\forall x : I(x) \Rightarrow \exists y : \neg O(x, y)$.

A formal specification does not necessarily capture our intention!

Wolfgang Schreiner

http://www.risc.jku.at

14/45

Proofs

A proof is a structured argument that a formula is true.

A tree whose nodes represent proof situations (states).

- Each proof situation consists of knowledge and a goal.
 - $K_1, \ldots, K_n \vdash G$
 - Knowledge $K_1, ..., K_n$: formulas assumed to be true.
 - Goal G: formula to be proved relative to knowledge.
- The root of the tree is the initial proof situation.

 - G: formula to be proved.

Proof Rules

A proof rules describes how a proof situation can be reduced to zero. one, or more "subsituations".

$$\frac{\ldots \vdash \ldots}{K_1, \ldots, K_n \vdash G}$$

- Rule may or may not close the (sub)proof:
 - Zero substituations: G has been proved. (sub)proof is closed.
 - One or more substituations: G is proved, if all subgoals are proved.
- Top-down rules: focus on G.
 - \blacksquare *G* is decomposed into simpler goals G_1, G_2, \ldots
- **Bottom-up rules:** focus on K_1, \ldots, K_n .
 - Knowledge is extended to $K_1, \ldots, K_n, K_{n+1}$.

In each proof situation, we aim at showing that the goal is "apparently" true with respect to the given knowledge.

Wolfgang Schreiner http://www.risc.jku.at 17/45

Disjunction $F_1 \vee F_2$

$$\frac{K, \neg G_1 \vdash G_2}{K \vdash G_1 \lor G_2} \qquad \frac{\ldots, K_1 \vdash G \quad \ldots, K_2 \vdash G}{\ldots, K_1 \lor K_2 \vdash G}$$

- Goal $G_1 \vee G_2$.
 - \blacksquare Create one substituation where G_2 is proved under the assumption that G_1 does not hold (or vice versa):

We have to show $G_1 \vee G_2$. We assume $\neg G_1$ and show G_2 . (proof continues with goal G₂ and additional knowledge $\neg G_1$)

- Knowledge $K_1 \vee K_2$.
 - \blacksquare Create two substituations, one with K_1 and one with K_2 in knowledge. We know $K_1 \vee K_2$. We thus proceed by case distinction:
 - Case K₁: ... (proof continues with current goal and additional knowledge K_1).
 - \blacksquare Case K_2 : ... (proof continues with current goal and additional knowledge K_2).

Conjunction $F_1 \wedge F_2$

$$\begin{array}{c|c} K \vdash G_1 & K \vdash G_2 \\ \hline K \vdash G_1 \land G_2 & \dots, K_1 \land K_2, K_1, K_2 \vdash G \\ \hline \dots, K_1 \land K_2 \vdash G \\ \end{array}$$

- Goal $G_1 \wedge G_2$.
 - Create two subsituations with goals G_1 and G_2 .

We have to show $G_1 \wedge G_2$.

- We show G_1 : ... (proof continues with goal G_1)
- We show G_2 : ... (proof continues with goal G_2)
- Knowledge $K_1 \wedge K_2$.
 - \blacksquare Create one substituation with K_1 and K_2 in knowledge.

We know $K_1 \wedge K_2$. We thus also know K_1 and K_2 . (proof continues with current goal and additional knowledge K_1 and K_2)

Wolfgang Schreiner http://www.risc.jku.at 18/45

Implication $F_1 \Rightarrow F_2$

$$\frac{K, G_1 \vdash G_2}{K \vdash G_1 \Rightarrow G_2} \qquad \frac{\ldots \vdash K_1 \quad \ldots, K_2 \vdash G}{\ldots, K_1 \Rightarrow K_2 \vdash G}$$

- Goal $G_1 \Rightarrow G_2$
 - \blacksquare Create one substituation where G_2 is proved under the assumption that G_1 holds:

We have to show $G_1 \Rightarrow G_2$. We assume G_1 and show G_2 . (proof continues with goal G_2 and additional knowledge G_1)

- Knowledge $K_1 \Rightarrow K_2$
 - \blacksquare Create two substituations, one with goal K_1 and one with knowledge K_2 .

We know $K_1 \Rightarrow K_2$.

- We show K_1 : . . . (proof continues with goal K_1)
- We know K_2 : ... (proof continues with current goal and additional knowledge K_2).

http://www.risc.jku.at

Equivalence $F_1 \Leftrightarrow F_2$

$$\frac{K \vdash G_1 \Rightarrow G_2 \quad K \vdash G_2 \Rightarrow G_1}{K \vdash G_1 \Leftrightarrow G_2} \qquad \frac{\ldots \vdash (\neg)K_1 \quad \ldots, (\neg)K_2 \vdash G}{\ldots, K_1 \Leftrightarrow K_2 \vdash G}$$

$$\frac{\ldots \vdash (\neg)K_1 \quad \ldots, (\neg)K_2 \vdash G}{\ldots, K_1 \Leftrightarrow K_2 \vdash G}$$

- Goal $G_1 \Leftrightarrow G_2$
 - Create two subsituations with implications in both directions as goals: We have to show $G_1 \Leftrightarrow G_2$.
 - We show $G_1 \Rightarrow G_2 : \dots$ (proof continues with goal $G_1 \Rightarrow G_2$)
 - We show $G_2 \Rightarrow G_1$: . . . (proof continues with goal $G_2 \Rightarrow G_1$)
- Knowledge $K_1 \Leftrightarrow K_2$
 - \blacksquare Create two substituations, one with goal $(\neg)K_1$ and one with knowledge $(\neg)K_2$.

We know $K_1 \Leftrightarrow K_2$.

- We show $(\neg)K_1: \dots$ (proof continues with goal $(\neg)K_1$)
- We know $(\neg)K_2: \dots$ (proof continues with current goal and additional knowledge $(\neg)K_2$)

Wolfgang Schreiner http://www.risc.jku.at 21/45

Existential Quantification $\exists x : F$

- Goal $\exists x : G$
 - Choose term T to create one substituation with goal G[T/x]. We have to show $\exists x : G$. It suffices to show G[T/x]. (proof continues with goal G[T/x])
- Knowledge $\exists x : K$
 - Introduce new (arbitrarily named constant) x_0 and create one substituation with additional knowledge $K[x_0/x]$.

We know $\exists x : K$. Let x_0 be such that $K[x_0/x]$. (proof continues with current goal and additional knowledge $K[x_0/x]$)

Universal Quantification $\forall x : F$

$$\frac{K \vdash G[x_0/x]}{K \vdash \forall x : G} (x_0 \text{ new for } K, G) \qquad \frac{\ldots, \forall x : K, K[T/x] \vdash G}{\ldots, \forall x : K \vdash G}$$

- Goal $\forall x : G$
 - Introduce new (arbitrarily named) constant x_0 and create one substituation with goal $G[x_0/x]$.

We have to show $\forall x : G$. Take arbitrary x_0 . We show $G[x_0/x]$. (proof continues with goal $G[x_0/x]$)

- Knowledge $\forall x : K$
 - Choose term T to create one substituation with formula K[T/x]added to the knowledge.

We know $\forall x : K$ and thus also K[T/x]. (proof continues with current goal and additional knowledge K[T/x])

Wolfgang Schreiner

http://www.risc.jku.at

22/45

Example

We show

(a)
$$(\exists x : \forall y : P(x, y)) \Rightarrow (\forall y : \exists x : P(x, y))$$

We assume

(1)
$$\exists x : \forall y : P(x, y)$$

and show

(b)
$$\forall y : \exists x : P(x, y)$$

Take arbitrary y_0 . We show

(c)
$$\exists x : P(x, y_0)$$

From (1) we know for some x_0

(2)
$$\forall y : P(x_0, y)$$

From (2) we know

(3)
$$P(x_0, y_0)$$

From (3), we know (c), QED.

Example

We show

(a)
$$(\exists x : p(x)) \land (\forall x : p(x) \Rightarrow \exists y : q(x,y)) \Rightarrow (\exists x, y : q(x,y))$$

We assume

(1)
$$(\exists x : p(x)) \land (\forall x : p(x) \Rightarrow \exists y : q(x, y))$$

and show

(b)
$$\exists x, y : q(x, y)$$

From (1), we know

- (2) $\exists x : p(x)$
- (3) $\forall x : p(x) \Rightarrow \exists y : q(x, y)$

From (2) we know for some x_0

(4) $p(x_0)$

Wolfgang Schreiner

http://www.risc.jku.at

Example (Contd)

From (3), we know

$$(5) p(x_0) \Rightarrow \exists y : q(x_0, y)$$

From (4) and (5), we know

$$(6) \exists y : q(x_0, y)$$

From (6), we know for some y_0

(7)
$$q(x_0, y_0)$$

From (7), we know (b). QED.

Wolfgang Schreiner

http://www.risc.jku.at

26/45

Indirect Proofs

25/45

$$K, \neg G \vdash \text{false}$$

$$\frac{K, \neg G \vdash \text{false}}{K \vdash G} \qquad \frac{K, \neg G \vdash F \quad K, \neg G \vdash \neg F}{K \vdash G} \qquad \dots, \neg G \vdash \neg K$$

- \blacksquare Add $\neg G$ to the knowledge and show a contradiction.
 - Prove that "false" is true.
 - Prove that a formula F is true and also prove that it is false.
 - Prove that some knowledge K is false, i.e. that $\neg K$ is true.
 - Switches goal G and knowledge K (negating both).

Sometimes simpler than a direct proof.

Example

We show

(a)
$$(\exists x : \forall y : P(x, y)) \Rightarrow (\forall y : \exists x : P(x, y))$$

We assume

(1)
$$\exists x : \forall y : P(x, y)$$

and show

(b)
$$\forall y : \exists x : P(x, y)$$

We assume

(2)
$$\neg \forall y : \exists x : P(x, y)$$

and show a contradiction.

Example

. . .

From (2), we know

(3) $\exists y : \forall x : \neg P(x, y)$

Let y₀ be such that

(4)
$$\forall x : \neg P(x, y_0)$$

From (1) we know for some x_0

(5) $\forall y : P(x_0, y)$

From (5) we know

(6) $P(x_0, y_0)$

From (4), we know

(7) $\neg P(x_0, y_0)$

From (6) and (7), we have a contradiction. QED.

Wolfgang Schreiner

http://www.risc.jku.at

29/45

2. The Art of Proving

3. The RISC ProofNavigator

Wolfgang Schreiner http://www.risc.jku.at 30/45

The RISC ProofNavigator

- An interactive proving assistant for program verification.
 - Research Institute for Symbolic Computation (RISC), 2005–: http://www.risc.jku.at/research/formal/software/ProofNavigator.
 - Development based on prior experience with PVS (SRI, 1993-).
 - Kernel and GUI implemented in Java.
 - Uses external SMT (satisfiability modulo theories) solver.
 - CVCL (Cooperating Validity Checker Lite) 2.0, CVC3.
 - Runs under Linux (only); freely available as open source (GPL).
- A language for the definition of logical theories.
 - Based on a strongly typed higher-order logic (with subtypes).
 - Introduction of types, constants, functions, predicates.
- Computer support for the construction of proofs.
 - Commands for basic inference rules and combinations of such rules.
 - Applied interactively within a sequent calculus framework.
 - Top-down elaboration of proof trees.

Designed for simplicity of use; applied to non-trivial verifications.

Using the Software

For survey, see "Program Verification with the RISC ProofNavigator". For details, see "The RISC ProofNavigator: Tutorial and Manual".

- Develop a theory.
 - Text file with declarations of types, constants, functions, predicates.
 - Axioms (propositions assumed true) and formulas (to be proved).
- Load the theory.
 - File is read; declarations are parsed and type-checked.
 - Type-checking conditions are generated and proved.
- Prove the formulas in the theory.
 - Human-guided top-down elaboration of proof tree.
 - Steps are recorded for later replay of proof.
 - Proof status is recorded as "open" or "completed".
- Modify theory and repeat above steps.
 - Software maintains dependencies of declarations and proofs.
 - Proofs whose dependencies have changed are tagged as "untrusted".

Wolfgang Schreiner http://www.risc.jku.at 31/45 Wolfgang Schreiner http://www.risc.jku.at 32/45

Starting the Software

Starting the software:

ProofNavigator & (32 bit machines at RISC) ProofNavigator64 & (64 bit machines at RISC)

Command line options:

```
Usage: ProofNavigator [OPTION]... [FILE]

FILE: name of file to be read on startup.

OPTION: one of the following options:
-n, --nogui: use command line interface.
-c, --context NAME: use subdir NAME to store context.
--cvcl PATH: PATH refers to executable "cvcl".
-s, --silent: omit startup message.
-h, --help: print this message.
```

■ Repository stored in subdirectory of current working directory:

ProofNavigator/

- Option -c dir or command newcontext "dir":
 - Switches to repository in directory *dir*.

Wolfgang Schreiner

http://www.risc.jku.at

33/45

A Theory


```
% switch repository to "sum"
newcontext "sum";

% the recursive definition of the sum from 0 to n
sum: NAT->NAT;
S1: AXIOM sum(0)=0;
S2: AXIOM FORALL(n:NAT): n>0 => sum(n)=n+sum(n-1);

% proof that explicit form is equivalent to recursive definition
S: FORMULA FORALL(n:NAT): sum(n) = (n+1)*n/2;
```

Declarations written with an external editor in a text file.

The Graphical User Interface

Wolfgang Schreiner http://www.risc.jku.at

Proving a Formula

34/45

When the file is loaded, the declarations are pretty-printed:

```
sum \in \mathbb{N} \to \mathbb{N}
axiom S1 = sum(0) = 0
axiom S2 = \forall n \in \mathbb{N}: n > 0 \Rightarrow sum(n) = n + sum(n-1)
S = \forall n \in \mathbb{N}: sum(n) = \frac{(n+1) \cdot n}{2}
```

The proof of a formula is started by the prove command.

Wolfgang Schreiner http://www.risc.jku.at 35/45 Wolfgang Schreiner http://www.risc.jku.at 36/45

Proving a Formula

Wolfgang Schreiner

http://www.risc.jku.at

37/45

Proving a Formula

Constants: $x_0 \in S_0, \dots$

 B_m

 $[L_{n+m}]$

- Proof of formula *F* is represented as a tree.
 - Each tree node denotes a proof state (goal).
 - Logical sequent:
 - $A_1, A_2, \ldots \vdash B_1, B_2, \ldots$ Interpretation:

 - $(A_1 \wedge A_2 \wedge \ldots) \Rightarrow (B_1 \vee B_2 \vee \ldots)$
 - Initially single node $Axioms \vdash F$.
 - The tree must be expanded to completion.
 - Every leaf must denote an obviously valid formula.
 - Some A_i is false or some B_i is true.
 - A proof step consists of the application of a proving rule to a goal.
 - Either the goal is recognized as true.
 - Or the goal becomes the parent of a number of children (subgoals). The conjunction of the subgoals implies the parent goal.

Wolfgang Schreiner http://www.risc.jku.at 38/45

An Open Proof Tree

Closed goals are indicated in blue; goals that are open (or have open subgoals) are indicated in red. The red bar denotes the "current" goal.

A Completed Proof Tree

The visual representation of the complete proof structure; by clicking on a node, the corresponding proof state is displayed.

Wolfgang Schreiner http://www.risc.jku.at 39/45 Wolfgang Schreiner http://www.risc.jku.at 40/45

Navigation Commands

Various buttons support navigation in a proof tree.

- 🔷: prev
 - Go to previous open state in proof tree.
- inext
 - Go to next open state in proof tree.
- = 🥎: undo
 - Undo the proof command that was issued in the parent of the current state; this discards the whole proof tree rooted in the parent.
- e i redo
 - Redo the proof command that was previously issued in the current state but later undone; this restores the discarded proof tree.

Single click on a node in the proof tree displays the corresponding state; double click makes this state the current one.

Wolfgang Schreiner http://www.risc.jku.at 41/45

Proving Commands

More commands can be selected from the menus.

- assume
 - Introduce a new assumption in the current state; generates a sibling state where this assumption has to be proved.
- case:
 - Split current state by a formula which is assumed as true in one child state and as false in the other.
- expand:
 - Expand the definitions of denoted constants, functions, or predicates.
- lemma:
 - Introduce another (previously proved) formula as new knowledge.
- instantiate:
 - Instantiate a universal assumption or an existential goal.
- induction:
 - Start an induction proof on a goal formula that is universally quantified over the natural numbers.

Here the creativity of the user is required!

Proving Commands

The most important proving commands can be also triggered by buttons.

- 💶 掛 (scatter)
 - Recursively applies decomposition rules to the current proof state and to all generated child states; attempts to close the generated states by the application of a validity checker.
- decompose)
 - Like scatter but generates a single child state only (no branching).
- split
 - Splits current state into multiple children states by applying rule to current goal formula (or a selected formula).
- (auto)
 - Attempts to close current state by instantiation of quantified formulas.
- \(\bar{b} \) (autostar)
 - Attempts to close current state and its siblings by instantiation.

Automatic decomposition of proofs and closing of proof states.

Wolfgang Schreiner http://www.risc.jku.at

Auxiliary Commands

42/45

Some buttons have no command counterparts.

- ©: counterexample
 - Generate a "counterexample" for the current proof state, i.e. an interpretation of the constants that refutes the current goal.
- X
 - Abort current prover activity (proof state simplification or counterexample generation).
- - Show menu that lists all commands and their (optional) arguments.
- 403
 - Simplify current state (if automatic simplification is switched off).

More facilities for proof control.

Proving Strategies

- Initially: semi-automatic proof decomposition.
 - expand expands constant, function, and predicate definitions.
 - scatter aggressively decomposes a proof into subproofs.
 - decompose simplifies a proof state without branching.
 - induction for proofs over the natural numbers.
- Later: critical hints given by user.
 - assume and case cut proof states by conditions.
 - instantiate provide specific formula instantiations.
- Finally: simple proof states are yielded that can be automatically closed by the validity checker.
 - auto and autostar may help to close formulas by the heuristic instantiation of quantified formulas.

Appropriate combination of semi-automatic proof decomposition, critical hints given by the user, and the application of a validity checker is crucial.

Wolfgang Schreiner http://www.risc.jku.at 45/45