Logic and Proving

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

Two kinds of syntactic phrases.

- Term T denoting an object.
- Variable x
- Object constant c
- Function application $f\left(T_{1}, \ldots, T_{n}\right)$ (may be written infix)
n-ary function constant f
- Formula F denoting a truth value.
- Atomic formula $p\left(T_{1}, \ldots, T_{n}\right)$ (may be written infix)
n-ary predicate constant p.
- Negation $\neg F($ "not F ")
- Conjunction $F_{1} \wedge F_{2}\left(" F_{1}\right.$ and $\left.F_{2} "\right)$

Disjunction $F_{1} \vee F_{2}$ (" F_{1} or F_{2} ")

- Implication $F_{1} \Rightarrow F_{2}$ ("if F_{1}, then F_{2} ")
- Equivalence $F_{1} \Leftrightarrow F_{2}$ ("if F_{1}, then F_{2}, and vice versa")
- Universal quantification $\forall x: F$ ("for all x, F ")
- Existential quantification $\exists x: F$ ("for some x, F ")

1. The Language of Logic
2. The Art of Proving
3. The RISC ProofNavigator

Syntactic Shortcuts


```
\square}\forall\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{}:
    \square}\forall\mp@subsup{x}{1}{}:\ldots:\forall\mp@subsup{x}{n}{}:
\exists
        \square\exists\mp@subsup{x}{1}{}:\ldots:\exists\mp@subsup{x}{n}{}:F
\square|x\inS:F
        \square|x:x\inS=>F
| \existsx\inS:F
    | \existsx:x\inS\wedgeF
```

Help to make formulas more readable.

Examples

Terms and formulas may appear in various syntactic forms.

- Terms:

$$
\begin{aligned}
& \exp (x) \\
& a \cdot b+1 \\
& a[i] \cdot b \\
& \sqrt{\frac{x^{2}+2 x+1}{(y+1)^{2}}}
\end{aligned}
$$

- Formulas:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& n \mid 2 n \\
& \forall x \in \mathbb{N}: x \geq 0 \\
& \forall x \in \mathbb{N}: 2|x \vee 2|(x+1) \\
& \forall x \in \mathbb{N}, y \in \mathbb{N}: x<y \Rightarrow \\
& \quad \exists z \in \mathbb{N}: x+z=y
\end{aligned}
$$

Terms and formulas may be nested arbitrarily deeply.

Example

We assume the domain of natural numbers and the "classical" interpretation of constants $1,2,+,=,<$.

$$
1+1=2
$$

True.

$$
1+1=2 \vee 2+2=2
$$

True.

- $1+1=2 \wedge 2+2=2$
False.
- $1+1=2 \Rightarrow 2=1+1$
True.

$$
1+1=1 \Rightarrow 2+2=2
$$

True.

$$
1+1=2 \Rightarrow 2+2=2
$$

False.

$$
\text { - } 1+1=1 \Leftrightarrow 2+2=2
$$

True.

The Meaning of Formulas

- Atomic formula $p\left(T_{1}, \ldots, T_{n}\right)$
- True if the predicate denoted by p holds for the values of T_{1}, \ldots, T_{n} - Negation $\neg F$
- True if and only if F is false.
- Conjunction $F_{1} \wedge F_{2}$ (" F_{1} and F_{2} ")
- True if and only if F_{1} and F_{2} are both true.
- Disjunction $F_{1} \vee F_{2}$ (" F_{1} or F_{2} ")
- True if and only if at least one of F_{1} or F_{2} is true.
- Implication $F_{1} \Rightarrow F_{2}$ ("if F_{1}, then F_{2} ")
- False if and only if F_{1} is true and F_{2} is false.
- Equivalence $F_{1} \Leftrightarrow F_{2}$ ("if F_{1}, then F_{2}, and vice versa")
- True if and only if F_{1} and F_{2} are both true or both false.
- Universal quantification $\forall x: F$ ("for all $\left.x, F^{\prime \prime}\right)$
- True if and only if F is true for every possible value assignment of x.
- Existential quantification $\exists x: F$ ("for some x, F ")
- True if and only if F is true for at least one value assignment of x.

Wolfgang Schreiner
http://www.risc.jku.at

Example

- $x+1=1+x$
- True, for every assignment of a number a to variable x.
- $\forall x: x+1=1+x$
- True (because for every assignment a to $x, x+1=1+x$ is true). $x+1=2$
- If x is assigned "one", the formula is true.
- If x is assigned "two", the formula is false.
$\exists x: x+1=2$
- True (because $x+1=2$ is true for assignment "one" to x).
$\forall x: x+1=2$
- False (because $x+1=2$ is false for assignment "two" to x).
$\forall x: \exists y: x<y$
- True (because for every assignment a to x, there exists the assignment $a+1$ to y which makes $x<y$ true).
$\square y: \forall x: x<y$
- False (because for every assignment a to y, there is the assignment $a+1$ to x which makes $x<y$ false).
Wolfgang Schreiner

Formula Equivalences

Formulas may be replaced by equivalent formulas.
■ . . .

Familiarity with manipulation of formulas is important.
Wolfgang Schreiner
http://www.risc.jku.at

The Usage of Formulas

Precise formulation of statements describing object relationships.

- Statement:

If x and y are natural numbers and y is not zero, then q is the truncated quotient of x divided by y.

- Formula:

$$
\begin{aligned}
& x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge y \neq 0 \Rightarrow \\
& \quad q \in \mathbb{N} \wedge \exists r \in \mathbb{N}: r<y \wedge x=y \cdot q+r
\end{aligned}
$$

- Problem specification:

Given natural numbers x and y such that y is not zero, compute the truncated quotient q of x divided by y.

- Inputs: x, y
- Input condition: $x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge y \neq 0$
- Output: q
- Output condition: $q \in \mathbb{N} \wedge \exists r \in \mathbb{N}: r<y \wedge x=y \cdot q+r$

$$
\begin{aligned}
& \text { - } \neg \neg F_{1} \leadsto F_{1} \\
& \text { - } \neg\left(F_{1} \wedge F_{2}\right) \leadsto \neg F_{1} \vee \neg F_{2} \\
& \square \neg\left(F_{1} \vee F_{2}\right) \leadsto \neg F_{1} \wedge \neg F_{2} \\
& \square \neg\left(F_{1} \Rightarrow F_{2}\right) \leadsto F_{1} \wedge \neg F_{2} \\
& \text { - } \neg \forall x: F \longleftrightarrow \exists x: \neg F \\
& \square \neg \exists x: F \leadsto \forall x: \neg F \\
& \text { - } F_{1} \Rightarrow F_{2} \leadsto \neg F_{2} \Rightarrow \neg F_{1} \\
& \text { - } F_{1} \Rightarrow F_{2} \leadsto \neg F_{1} \vee F_{2} \\
& \text { - } F_{1} \Leftrightarrow F_{2} \leadsto \neg F_{1} \Leftrightarrow \neg F_{2}
\end{aligned}
$$

Example

- "All swans are white or black."

$$
\forall x: \operatorname{swan}(x) \Rightarrow \text { white }(x) \vee \operatorname{black}(x)
$$

- "There exists a black swan."

$$
\exists x: \operatorname{swan}(x) \wedge \operatorname{black}(x)
$$

- "A swan is white, unless it is black."

$$
\forall x: \operatorname{swan}(x) \wedge \neg \operatorname{black}(x) \Rightarrow \text { white }(x)
$$

$$
\because \forall x: \operatorname{swan}(x) \wedge \neg \text { white }(x) \Rightarrow \operatorname{black}(x)
$$

$$
=\forall x: \operatorname{swan}(x) \Rightarrow \text { white }(x) \vee \operatorname{black}(x)
$$

- "Not everything that is white or black is a swan."

$$
\neg \forall x: \text { white }(x) \vee \operatorname{black}(x) \Rightarrow \operatorname{swan}(x)
$$

- $\exists x:($ white $(x) \vee$ black $(x)) \wedge \neg \operatorname{swan}(x)$.
- "Black swans have at least one black parent".

$$
\forall x: \operatorname{swan}(x) \wedge \operatorname{black}(x) \Rightarrow \exists y: \operatorname{swan}(y) \wedge \operatorname{black}(y) \wedge \operatorname{parent}(y, x)
$$

It is important to recognize the logical structure of an informal sentence
in its various equivalent forms.
Wolfgang Schreiner
http://www.risc.jku.at

Problem Specifications

- The specification of a computation problem:
- Input: variables $x_{1} \in S_{1}, \ldots, x_{n} \in S_{n}$
- Input condition: formula $I\left(x_{1}, \ldots, x_{n}\right)$.
- Output: variables $y_{1} \in T_{1}, \ldots, y_{m} \in T_{n}$
- Output condition: formula $O\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$.
- $F\left(x_{1}, \ldots, x_{n}\right)$: only x_{1}, \ldots, x_{n} are free in F.
- x is free in F, if not every occurrence of x is inside the scope of a quantifier (such as \forall or \exists) that binds x.
- An implementation of the specification:
- A function (program) $f: S_{1} \times \ldots \times S_{n} \rightarrow T_{1} \times \ldots \times T_{m}$ such that

$$
\begin{aligned}
& \forall x_{1} \in S_{1}, \ldots, x_{n} \in S_{n}: I\left(x_{1}, \ldots, x_{n}\right) \Rightarrow \\
& \quad \text { let }\left(y_{1}, \ldots, y_{m}\right)=f\left(x_{1}, \ldots, x_{n}\right) \text { in } \\
& O\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
\end{aligned}
$$

- For all arguments that satisfy the input condition, f must compute results that satisfy the output condition.
Basis of all specification formalisms.

Example: A Problem Specification

Given an integer array a, a position p in a, and a length I, return the array b derived from a by removing $a[p], \ldots, a[p+l]$.

- Input: $a \in \mathbb{Z}^{*}, p \in \mathbb{N}, I \in \mathbb{N}$
- Input condition:

$$
p+I \leq \operatorname{length}_{\mathbb{Z}}(a)
$$

- Output: $b \in \mathbb{Z}^{*}$
- Output condition:

$$
\begin{aligned}
& \text { let } n=\text { length }_{\mathbb{Z}}(a) \text { in } \\
& \text { length }_{\mathbb{Z}}(b)=n-l \wedge \\
& (\forall i \in \mathbb{N}: i<p \Rightarrow b[i]=a[i]) \wedge \\
& (\forall i \in \mathbb{N}: p \leq i<n-I \Rightarrow b[i]=a[i+l])
\end{aligned}
$$

Mathematical theory:

$$
\begin{aligned}
& T^{*}:=\bigcup_{i \in \mathbb{N}} T^{i}, T^{i}:=\mathbb{N}_{i} \rightarrow T, \mathbb{N}_{i}:=\{n \in \mathbb{N}: n<i\} \\
& \text { length } T_{T}: T^{*} \rightarrow \mathbb{N}, \text { length }{ }_{T}(a)=\text { such } i \in \mathbb{N}: a \in T^{i}
\end{aligned}
$$

1. The Language of Logic
2. The Art of Proving
3. The RISC ProofNavigator

Validating Problem Specifications

Given a problem specification with input condition $I(x)$ and output condition $O(x, y)$.

- Correctness: take some legal input(s) a with legal output(s) b. - Check that $I(a)$ and $O(a, b)$ indeed hold.
- Falseness: take some legal input(s) a with illegal output(s) b - Check that $I(a)$ holds and $O(a, b)$ does not hold.
- Satisfiability: every legal input should have some legal output.
$■$ Check $\forall x: I(x) \Rightarrow \exists y: O(x, y)$.
- Non-triviality: for every legal input not every output should be legal.
- Check $\forall x: I(x) \Rightarrow \exists y: \neg O(x, y)$

A formal specification does not necessarily capture our intention!

Proofs

A proof is a structured argument that a formula is true.

- A tree whose nodes represent proof situations (states).

Each proof situation consists of knowledge and a goal.

$$
\bullet K_{1}, \ldots, K_{n} \vdash G
$$

- Knowledge K_{1}, \ldots, K_{n} : formulas assumed to be true.
- Goal G : formula to be proved relative to knowledge.
- The root of the tree is the initial proof situation.
$\square K_{1}, \ldots, K_{n}$: axioms of mathematical background theories.
- G : formula to be proved.

Proof Rules

A proof rules describes how a proof situation can be reduced to zero, one, or more "subsituations".
$\frac{\ldots \vdash \ldots . \quad \ldots \vdash \ldots}{K_{1}, \ldots, K_{n} \vdash G}$

- Rule may or may not close the (sub)proof:
- Zero subsituations: G has been proved, (sub)proof is closed.
- One or more subsituations: G is proved, if all subgoals are proved.
- Top-down rules: focus on G.
- G is decomposed into simpler goals G_{1}, G_{2}, \ldots
- Bottom-up rules: focus on K_{1}, \ldots, K_{n}.
\square Knowledge is extended to $K_{1}, \ldots, K_{n}, K_{n+1}$.
In each proof situation, we aim at showing that the goal is "apparently" true with respect to the given knowledge.

$$
\frac{K, \neg G_{1} \vdash G_{2}}{K \vdash G_{1} \vee G_{2}} \quad \frac{\ldots, K_{1} \vdash G \quad \ldots, K_{2} \vdash G}{\ldots, K_{1} \vee K_{2} \vdash G}
$$

- Goal $G_{1} \vee G_{2}$.
- Create one subsituation where G_{2} is proved under the assumption that G_{1} does not hold (or vice versa):

We have to show $G_{1} \vee G_{2}$. We assume $\neg G_{1}$ and show G_{2}.
(proof continues with goal G_{2} and additional knowledge $\neg G_{1}$)

- Knowledge $K_{1} \vee K_{2}$.
- Create two subsituations, one with K_{1} and one with K_{2} in knowledge.

We know $K_{1} \vee K_{2}$. We thus proceed by case distinction:

- Case K_{1} : ... (proof continues with current goal and additional knowledge K_{1}).
- Case K_{2} : ... (proof continues with current goal and additional knowledge K_{2}).

Conjunction $F_{1} \wedge F_{2}$
$\frac{K \vdash G_{1} \quad K \vdash G_{2}}{K \vdash G_{1} \wedge G_{2}} \quad \frac{\ldots, K_{1} \wedge K_{2}, K_{1}, K_{2} \vdash G}{\ldots, K_{1} \wedge K_{2} \vdash G}$

- Goal $G_{1} \wedge G_{2}$.
- Create two subsituations with goals G_{1} and G_{2}.

We have to show $G_{1} \wedge G_{2}$.

- We show G_{1} : ... (proof continues with goal G_{1})
- We show G_{2} : ... (proof continues with goal G_{2})
- Knowledge $K_{1} \wedge K_{2}$.
- Create one subsituation with K_{1} and K_{2} in knowledge. We know $K_{1} \wedge K_{2}$. We thus also know K_{1} and K_{2}. (proof continues with current goal and additional knowledge K_{1} and K_{2})

$$
\frac{K, G_{1} \vdash G_{2}}{K \vdash G_{1} \Rightarrow G_{2}} \quad \frac{\ldots \vdash K_{1} \quad \ldots, K_{2} \vdash G}{\ldots, K_{1} \Rightarrow K_{2} \vdash G}
$$

- Goal $G_{1} \Rightarrow G_{2}$
- Create one subsituation where G_{2} is proved under the assumption that G_{1} holds:

We have to show $G_{1} \Rightarrow G_{2}$. We assume G_{1} and show G_{2}.
(proof continues with goal G_{2} and additional knowledge G_{1})

- Knowledge $K_{1} \Rightarrow K_{2}$
- Create two subsituations, one with goal K_{1} and one with knowledge K_{2}.

We know $K_{1} \Rightarrow K_{2}$.

- We show K_{1} : ... (proof continues with goal K_{1})
- We know K_{2} : . . (proof continues with current goal and additional knowledge K_{2}).

Equivalence $F_{1} \Leftrightarrow F_{2}$
$K \vdash G_{1} \Rightarrow G_{2} \quad K \vdash G_{2} \Rightarrow G_{1}$

$$
\frac{\ldots \vdash(\neg) K_{1} \quad \ldots,(\neg) K_{2} \vdash G}{\ldots, K_{1} \Leftrightarrow K_{2} \vdash G}
$$

- Goal $G_{1} \Leftrightarrow G_{2}$
- Create two subsituations with implications in both directions as goals: We have to show $G_{1} \Leftrightarrow G_{2}$.
- We show $G_{1} \Rightarrow G_{2}$: ... (proof continues with goal $G_{1} \Rightarrow G_{2}$)
- We show $G_{2} \Rightarrow G_{1}: \ldots$ (proof continues with goal $G_{2} \Rightarrow G_{1}$)
- Knowledge $K_{1} \Leftrightarrow K_{2}$
- Create two subsituations, one with goal $(\neg) K_{1}$ and one with knowledge $(\neg) K_{2}$

We know $K_{1} \Leftrightarrow K_{2}$.

- We show $(\neg) K_{1}$: . . (proof continues with goal $\left.(\neg) K_{1}\right)$
- We know $(\neg) K_{2}$: . . (proof continues with current goal and additional knowledge $(\neg) K_{2}$)

Existential Quantification $\exists x: F$

$$
\frac{K \vdash G[T / x]}{K \vdash \exists x: G} \quad \frac{\ldots, K\left[x_{0} / x\right] \vdash G}{\ldots, \exists x: K \vdash G}\left(x_{0} \text { new for } K, G\right)
$$

- Goal $\exists x: G$
- Choose term T to create one subsituation with goal $G[T / x]$.

We have to show $\exists x$: G. It suffices to show $G[T / x]$. (proof continues with goal $G[T / x]$)

- Knowledge $\exists x$: K

- Introduce new (arbitrarily named constant) x_{0} and create one subsituation with additional knowledge $K\left[x_{0} / x\right]$.

We know $\exists x$: K. Let x_{0} be such that $K\left[x_{0} / x\right]$. (proof continues with current goal and additional knowledge $K\left[x_{0} / x\right]$)

Universal Quantification $\forall x: F$
$\frac{K \vdash G\left[x_{0} / x\right]}{K \vdash \forall x: G}\left(x_{0}\right.$ new for $\left.K, G\right) \quad \ldots, \forall x: K, K[T / x] \vdash G$

- Goal $\forall x$: G
- Introduce new (arbitrarily named) constant x_{0} and create one subsituation with goal $G\left[x_{0} / x\right]$.

We have to show $\forall x$: G. Take arbitrary x_{0}.
We show $G\left[x_{0} / x\right]$. (proof continues with goal $G\left[x_{0} / x\right]$)

- Knowledge $\forall x$: K
- Choose term T to create one subsituation with formula $K[T / x]$ added to the knowledge.

We know $\forall x$: K and thus also $K[T / x]$.
(proof continues with current goal and additional
knowledge $K[T / x]$)

Wolfgang Schreiner

Example

We show

$$
\text { (a) }(\exists x: \forall y: P(x, y)) \Rightarrow(\forall y: \exists x: P(x, y))
$$

We assume

$$
\text { (1) } \exists x: \forall y: P(x, y)
$$

and show
(b) $\forall y: \exists x: P(x, y)$

Take arbitrary y_{0}. We show
(c) $\exists x: P\left(x, y_{0}\right)$

From (1) we know for some x_{0}
(2) $\forall y: P\left(x_{0}, y\right)$

From (2) we know
(3) $P\left(x_{0}, y_{0}\right)$

From (3), we know (c). QED.

Example

We show
(a) $(\exists x: p(x)) \wedge(\forall x: p(x) \Rightarrow \exists y: q(x, y)) \Rightarrow(\exists x, y: q(x, y))$

We assume
(1) $(\exists x: p(x)) \wedge(\forall x: p(x) \Rightarrow \exists y: q(x, y))$
and show
(b) $\exists x, y: q(x, y)$

From (1), we know
(2) $\exists x: p(x)$
(3) $\forall x: p(x) \Rightarrow \exists y: q(x, y)$

From (2) we know for some x_{0}
(4) $p\left(x_{0}\right)$

$$
\frac{K, \neg G \vdash \text { false }}{K \vdash G} \quad \frac{K, \neg G \vdash F \quad K, \neg G \vdash \neg F}{K \vdash G} \frac{\ldots, \neg G \vdash \neg K}{\ldots, K \vdash G}
$$

- Add $\neg G$ to the knowledge and show a contradiction.
- Prove that "false" is true.
- Prove that a formula F is true and also prove that it is false.
- Prove that some knowledge K is false, i.e. that $\neg K$ is true.
- Switches goal G and knowledge K (negating both).

Sometimes simpler than a direct proof.

Example (Contd)

From (3), we know
(5) $p\left(x_{0}\right) \Rightarrow \exists y: q\left(x_{0}, y\right)$

From (4) and (5), we know
(6) $\exists y: q\left(x_{0}, y\right)$

From (6), we know for some y_{0}
(7) $q\left(x_{0}, y_{0}\right)$

From (7), we know (b). QED.

Example

We show
(a) $(\exists x: \forall y: P(x, y)) \Rightarrow(\forall y: \exists x: P(x, y))$

We assume
(1) $\exists x: \forall y: P(x, y)$
and show
(b) $\forall y: \exists x: P(x, y)$

We assume

$$
\text { (2) } \neg \forall y: \exists x: P(x, y)
$$

and show a contradiction

From (2), we know
(3) $\exists y: \forall x: \neg P(x, y)$

Let y_{0} be such that
(4) $\forall x: \neg P\left(x, y_{0}\right)$

From (1) we know for some x_{0}
(5) $\forall y: P\left(x_{0}, y\right)$

From (5) we know
(6) $P\left(x_{0}, y_{0}\right)$

From (4), we know
(7) $\neg P\left(x_{0}, y_{0}\right)$

From (6) and (7), we have a contradiction. QED.

The RISC ProofNavigator

- An interactive proving assistant for program verification.
- Research Institute for Symbolic Computation (RISC), 2005-:
http://www.risc.jku.at/research/formal/software/ProofNavigator.
- Development based on prior experience with PVS (SRI, 1993-).
- Kernel and GUI implemented in Java.
- Uses external SMT (satisfiability modulo theories) solver.
- CVCL (Cooperating Validity Checker Lite) 2.0, CVC3.
- Runs under Linux (only); freely available as open source (GPL)
- A language for the definition of logical theories.
- Based on a strongly typed higher-order logic (with subtypes).
- Introduction of types, constants, functions, predicates.
- Computer support for the construction of proofs.
- Commands for basic inference rules and combinations of such rules.
- Applied interactively within a sequent calculus framework.
- Top-down elaboration of proof trees.

Designed for simplicity of use; applied to non-trivial verifications.

1. The Language of Logic
2. The Art of Proving
3. The RISC ProofNavigator

Using the Software

For survey, see "Program Verification with the RISC ProofNavigator". For details, see "The RISC ProofNavigator: Tutorial and Manual".

- Develop a theory.
- Text file with declarations of types, constants, functions, predicates.
- Axioms (propositions assumed true) and formulas (to be proved).
- Load the theory.
- File is read; declarations are parsed and type-checked.
- Type-checking conditions are generated and proved.
- Prove the formulas in the theory.
- Human-guided top-down elaboration of proof tree.
- Steps are recorded for later replay of proof.
- Proof status is recorded as "open" or "completed".
- Modify theory and repeat above steps.
- Software maintains dependencies of declarations and proofs.
- Proofs whose dependencies have changed are tagged as "untrusted".

Starting the Software

- Starting the software:

ProofNavigator \& (32 bit machines at RISC)
ProofNavigator64 \& (64 bit machines at RISC)

- Command line options:

Usage: ProofNavigator [OPTION]... [FILE]
FILE: name of file to be read on startup.
OPTION: one of the following options:
-n, --nogui: use command line interface.
-c, --context NAME: use subdir NAME to store context.
--cvcl PATH: PATH refers to executable "cvcl".
-s, --silent: omit startup message.
-h, --help: print this message.

- Repository stored in subdirectory of current working directory: ProofNavigator/
- Option -c dir or command newcontext "dir"
- Switches to repository in directory dir.
\% switch repository to "sum"
newcontext "sum";
\% the recursive definition of the sum from 0 to n sum: NAT->NAT;
S1: AXIOM sum $(0)=0$;
S2: AXIOM FORALL($n: N A T): n>0 \Rightarrow \operatorname{sum}(n)=n+\operatorname{sum}(n-1)$;
\% proof that explicit form is equivalent to recursive definition
S: FORMULA FORALL(n:NAT) : $\operatorname{sum}(n)=(n+1) * n / 2$;
Declarations written with an external editor in a text file.

The Graphical User Interface

Wolfgang Schreiner

Proving a Formula

When the file is loaded, the declarations are pretty-printed:
\square $\operatorname{sum} \in \mathbb{N} \rightarrow \mathbb{N}$
$\operatorname{axiom} \mathrm{S} 1 \equiv \operatorname{sum}(0)=0$
$\operatorname{axiom} \mathrm{S} 2 \equiv \forall n \in \mathbb{N}: n>0 \Rightarrow \operatorname{sum}(n)=n+\operatorname{sum}(n-1)$
$S \equiv \forall n \in \mathbb{N}: \operatorname{sum}(n)=\frac{(n+1) \cdot n}{2}$
The proof of a formula is started by the prove command.

Formula S
prove S: Construct Proof
proof S: Show Proof
formula S: Print Formula

Wolfgang Schreine

An Open Proof Tree

 [tca]: induction n in byu
 [tca]: induction n in byu
 [db]; proved (cvCL)
 [db]; proved (cvCL)
 [eb]
 [eb]
 Formula [S] proof state [dbj]
Constants (with types): sum.
|xe $\forall n \in \mathbb{N}: n>0 \Rightarrow \operatorname{sum}(n)=n+\operatorname{sum}(n-1$ d3i $\operatorname{sum}(0)=0$
nfa $\operatorname{sum}(0)=\frac{(0+1) \cdot 0}{2}$
Parent: [tca]

Closed goals are indicated in blue; goals that are open (or have open subgoals) are indicated in red. The red bar denotes the "current" goal.

- Proof of formula F is represented as a tree.
- Each tree node denotes a proof state (goal)
- Logical sequent:

$$
A_{1}, A_{2}, \ldots \vdash B_{1}, B_{2}, \ldots
$$

Interpretation:
$\left(A_{1} \wedge A_{2} \wedge \ldots\right) \Rightarrow\left(B_{1} \vee B_{2} \vee \ldots\right)$

- Initially single node Axioms $\vdash F$.
- The tree must be expanded to completion. - Every leaf must denote an obviously valid formula
\square Some A_{i} is false or some B_{j} is true.
- A proof step consists of the application of a proving rule to a goal.
- Either the goal is recognized as true.
- Or the goal becomes the parent of a number of children (subgoals). The conjunction of the subgoals implies the parent goal.

A Completed Proof Tree

- Proof Tree
∇ [tca]: induction n in byu
[dbj]: proved (CVCL)
∇ [ebj]: instantiate n_0+1 in lxe
[k5f]: proved (CVCL)

The visual representation of the complete proof structure; by clicking on a node, the corresponding proof state is displayed.

Various buttons support navigation in a proof tree.

prev

- Go to previous open state in proof tree.
\Rightarrow : next
- Go to next open state in proof tree.
\square : undo
- Undo the proof command that was issued in the parent of the current state; this discards the whole proof tree rooted in the parent.
- c : redo
- Redo the proof command that was previously issued in the current state but later undone; this restores the discarded proof tree.

Single click on a node in the proof tree displays the corresponding state; double click makes this state the current one.

More commands can be selected from the menus.

- assume
- Introduce a new assumption in the current state; generates a sibling state where this assumption has to be proved.
- case:
- Split current state by a formula which is assumed as true in one child state and as false in the other.
- expand:
- Expand the definitions of denoted constants, functions, or predicates.
- lemma:
- Introduce another (previously proved) formula as new knowledge.
- instantiate:
- Instantiate a universal assumption or an existential goal.
- induction:
- Start an induction proof on a goal formula that is universally quantified over the natural numbers.
Here the creativity of the user is required!
Wolfgang Schreiner
http://www.risc.jku.at

The most important proving commands can be also triggered by buttons.

- (scatter)
- Recursively applies decomposition rules to the current proof state and to all generated child states; attempts to close the generated states by the application of a validity checker.
\square (decompose)
- Like scatter but generates a single child state only (no branching).
- \& (split)
- Splits current state into multiple children states by applying rule to current goal formula (or a selected formula).(auto)
- Attempts to close current state by instantiation of quantified formulas.
- (autostar)
- Attempts to close current state and its siblings by instantiation.

Automatic decomposition of proofs and closing of proof states.
Wolfgang Schreiner
http://www.risc.jku.at
42/45

Auxiliary Commands

Some buttons have no command counterparts.: counterexample
Generate a "counterexample" for the current proof state, i.e. an interpretation of the constants that refutes the current goal.

- Abort current prover activity (proof state simplification or counterexample generation).
- Show menu that lists all commands and their (optional) arguments.
- Simplify current state (if automatic simplification is switched off).

More facilities for proof control.

Proving Strategies

- Initially: semi-automatic proof decomposition.
- expand expands constant, function, and predicate definitions.
- scatter aggressively decomposes a proof into subproofs.
decompose simplifies a proof state without branching.
- induction for proofs over the natural numbers.
- Later: critical hints given by user.
- assume and case cut proof states by conditions.
- instantiate provide specific formula instantiations.
- Finally: simple proof states are yielded that can be automatically closed by the validity checker.
- auto and autostar may help to close formulas by the heuristic instantiation of quantified formulas.

Appropriate combination of semi-automatic proof decomposition, critical hints given by the user, and the application of a validity checker is crucial.
Wolfgang Schreiner
http://www.risc.jku.at
45/45

