
Computer Systems:
Object-Oriented Programming in C++

Sample Exam

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

Last Name:

First Name:

Matrikelnummer:

Studienkennzahl:

Please write on the empty space of these sheets; you may also add additional pages. Answers
can be written in German or English. All written materials are allowed.



1. (20 points) Write a class Work whose objects represent working times (in whole minutes)
and salary rates (in whole cents per minute). With this class, the following operation shall
be possible:

Work* w = new Work(25, 60); // 25 cent/min, 60 min
w->add(65); // add 65 minutes working time
w->printSalary(); // prints salary "31,25" (25*125 Cents)
bool okay = w->subtract(60); // attempts to subtract 60 minutes

// returns false, if not sufficient time
// available (time remains unchanged)

Work::reset(*w); // reset working time to zero
Work v(30); // 30 cent/min, 0 min
int r = w->compare(v); // 0 if salaries of w and v are equal,

// 1, if w’s salary is bigger, -1, else
Work u(v); // u becomes a copy of v

2



2. (20 points) Take the following interfaces for an article respectively a shop selling articles:

class Article // an article
{
public:
virtual Identifier getId() = 0; // its identifier

};

class Shop // a shop
{
public:

// number n of articles in shop
virtual int numberOfArticles() = 0;

// get article i, 0 <= i < n
virtual Article* getArticle(int i) = 0;

};

Write a method

set<Identifier> getArticleIds(Shop* s);

which takes a shop s as parameter and returns as its result the set of the identifiers of all
articles contained in s.

3



3. (25 points) Take the template class

template<class T> class BoundedQueue {
public:
virtual ~BoundedQueue() { }
virtual bool isempty() = 0; // is queue empty?
virtual bool isfull() = 0; // is queue full?
virtual void put(T& x) = 0; // add x to queue
virtual T get() = 0; // remove element from queue

};

which describes the interface of a bounded queue to which (if the queue is not full) ele-
ments of type T can be added and from which (if the queue is not empty) elements can
be removed (in the order in which they were added). The operations assume that their
preconditions (queue is not full/empty) are satisfied.

Write a concrete template class

template<class T>
class ArrayQueue: public BoundedQueue<T> { ... };

which implements by a constructor

ArrayQueue(int s)

a bounded queue of size s with the help of an array a, its length l, a counter n (the number
of elements in the queue) and two indices h (head) and t (tail): elements are added at
position t (t is increased) and removed from position h (h is increased). If h respectively
t become s, they are reset to 0 (the technique of circular buffers). Actually, t can be
determined from h and n and is thus not strictly necessary.

4



4. (20 points) Consider the template class List presented in the course (slide set “Tem-
plates”, section “Generic Lists”). Write a template function read such that the following
operation becomes possible:

bool isend(double x) { return x == 0; }

List<double> l;
int n = read<double,isend>(l);

The function reads a sequence of items x1, . . . , xn+1 such that n + 1 is the smallest index i
for which isend(xi) returns true; the function puts the elements x1, . . . , xn (in the order
in which they were read) into l. The result of the function is n, if everything went okay,
and −1, if an error occurred. The function needs time O(n).

You may modify the definition of List, e.g. by adding new data members and/or member
functions (please indicate your changes clearly); in particular, since new elements are to
be added at the end of the list, it is recommended to keep track of its last element.

5



5. (15 points) Take the declarations

class I
{ public: virtual int key() = 0; };
class C: public I
{ public: virtual int key() { ... } int value() { ... } };
class D: public C
{ public: string name() { ... } };
class E:
{ public: virtual int key() { ... } };

void print(I* x) { ... }

Which of the following declarations/commands yield compilation errors or runtime errors
and what is the exact reason?

a) I* i = new I();

b) C* c = new C();

c) D* d = new D();

d) E* e = new E();

e) I* j = c;

f) I* k = d;

g) I* l = e;

h) C* f = d;

i) D* g = c;

j) D* h = dynamic_cast<D*>(c);

k) D* m = dynamic_cast<D*>(f);

l) print(j);

m) print(c);

n) print(d);

o) print(e);

Additionally state explicitly what the values of h and m are after the assignment (if any).

6


