
Formal Models for
Parallel and Distributed Systems

Exercise 2 (June 22)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

June 5, 2015

The exercise is to be submitted by the deadline stated above via the Moodle interface as a single
.zip or .tgz file containing

1. a PDF file with a decent cover page (mentioning the title of the course, your full name and
Matrikelnummer) with

• listings of the model files and

• the outputs/screenshots of the tool,

2. the model files used in the exercise.

1



A Client/Server System: CCS/FSP

Synchronous Communication First develop a CCS specification (in the value passing calcu-
lus presented in the lecture) of the system of Exercise 1 with one server and N clients where
the server and the clients interact by synchronous message passing. You may use in your spec-
ification variables ranging over integers and can use the usual integer operations in conditional
expressions and output actions.

Next translate this specification as directly as possible to a FSP model with N = 3.

Construct drawings for the labeled transition system of the server process, one client process,
and (if possible) of the composed system.

Construct manually in the animator a trace of a (part of a) system run where Client 1 requests
the resource, receives the resource, and releases the resource.

Check whether the system may run into a deadlock and give the output of the check.

Check whether the system maintains liveness for client 1 by defining a progress property that
includes the client’s actions for requesting the resource and entering the critical region, e.g.

progress LIVENESS = { c[1].request, c[1].enter }

(see also example Twocoin in LTSA).

Hide from the model all action names except those for entering and exiting the critical region by
the clients, perform minimization, and construct a drawing for the minimized system (see also
example User in LTSA).

Explain whether/how the drawing illustrates that mutual exclusion is preserved.

Verify formally whether the system maintains mutual exclusion by defining a corresponding
mutual exclusion property, e.g.

property MUTEX = (c[i:1..N].enter->p[i].exit->MUTEX).

which is composed with the system (see also Example Mutex_property in LTSA).

Asynchronous Communication Repeat the exercise by inserting 2N buffered channels of
size B between server and clients, and derive the same results as for synchronous communica-
tion. Use B = 1 for checking with LTSA.

Hint: since in the system no information is carried by messages, it suffices to model the buffer
with a state variable i that describes the number of messages in the buffer; see also the Example
BoundedBuffer in LTSA.

2


