
Formal Models for
Parallel and Distributed Systems

Exercise 1 (April 27)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

March 18, 2015

The exercise is to be submitted by the deadline stated above via the Moodle interface as a single
.zip or .tgz file containing

1. a single PDF file with a decent cover page (mentioning the title of the course, your full
name and Matrikelnummer) with

• nicely formatted listings of the commented model/configuration files and

• the output of the TLA+ model checker runs (if run from the command line) and/or
screenshots of the corresponding window (if run from the toolbox),

• an explicit interpretation of the results (does the modelcheck highlight an error or
not, how can the result be explained):

2. all .tla and (if used, also .cfg) files used in the exercise.



1 A Client/Server System

Write a TLA+ model of a distributed system of a server and N clients where the server maintains
a shared resource which it grants to at most one of the clients at a time, as depicted by the
following pseudo-code:
Server:
local given, waiting, sender

begin
given := <none>; waiting := {}
loop
sender := receiveRequest()
if sender = given then
if waiting = {} then
given := <none>

else
choose given from waiting;
waiting := waiting \ { given };
sendAnswer(given)

endif
elsif given = <none> then
given := sender
sendAnswer(given)

else
waiting :=
waiting U {sender}

endif
endloop

end Server

Client(p):
param ident

begin
loop
...
c1: sendRequest()
c2: receiveAnswer()
... // critical region
c3: sendRequest()

endloop
end Client

The system operates on the variables given, waiting, sender (describing the internal state of the
server component), the variables pc(p) (the “program counter” of client p) and four buffered
channels request1, request2, answer1, and answer2 holding the requests sent from each client to
the server respectively the answers returned from the server.

The system can be modeled by four server actions (corresponding to the combined effect of each
conditional branch in above pseudo-code) and, for each client, three client actions (correspond-
ing to the transition from one labeled command to the next (c1 → c2, c2 → c3, c3 → c1). The
“send/receive” calls in above pseudo-code mark the use of the the respective channels.

The overall structure of the system’s next state relation is therefore

Next ≡
ServerAction ∨
∃p ∈ {1, . . . , N } : ClientAction(p) ∨ ClientServerCommunication(p)

where each action is a disjunction of some basic actions. Write your specification as a single
module with parameterized state variables (pc(p)) and actions (ClientAction(p)).

Model-check your TLA+ specification for N = 3 clients and with respect to the following
correctness properties:

1



• Type correctness: all state variables maintain reasonable types.

• Mutual exclusion: it is never the case that two clients are at the same time in the criticial
region (at position c3).

• No starvation: every client that requests access to the critical region (is at position c2),
eventually gets access to the critical region (is at position c3).

You will realize that the last property is not true unless you impose some additional fairness
conditions on the server action that receives a request from the client. Can you augment the
server specification with some strong fairness conditions (of form SFt (A) where t denotes the
tuple of all system variables and A some action) such that the property becomes true?

On the virtual machine, the TLA+ command line tools can be invoked by the commands tla2tex,
sany, and tlc, e.g. the command “tlc <ModelName>” expands to

java -cp /software/tla tlc2.TLC <ModelName>

Likewise, the command toolbox starts the graphical TLA+ toolbox.

See the installation directory of TLA+ (e.g. /software/tla/examples) for numerous TLA+

examples, the “Documentation” section of the TLA+ toolbox web site and the online version of
Lamport’s book (especially chapters 14 and 15) for more information on the syntax of TLA+

and on the use of the model checker.

2


	A Client/Server System

