
Computer Systems (SS 2015)
Exercise 4: May 18, 2015

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

April 24, 2015

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

Exercise 4: Generic Polynomials by Inheritance

The goal of this exercise is to implement polynomials with rational coefficients. The imple-
mentation shall be based on a generic polynomial class Polynomial which works for arbitrary
coefficient types that support the usual ring operations.

In more detail, the implementation shall work as follows:

1. Take the following abstract class Ring:

class Ring {
public:
// destructor
virtual ~Ring() {}

// string representation of this element
virtual string str() const = 0;

// the constant of the type of this element and the inverse of this element
virtual const Ring* zero() const = 0;
virtual const Ring* operator-() const = 0;

// sum and product of this element and c
virtual const Ring* operator+(const Ring* c) const = 0;
virtual const Ring* operator*(const Ring* c) const = 0;

// comparison function
virtual bool operator==(const Ring* c) const = 0;

};

2. Implement a concrete class Rational

class Rational: public Ring {
public:
// rational with numerator n and denominator d (default 0/1)
Rational(int n=0, int d=1);

};

This class overrides all the abstract (pure virtual) operations of class Ring by concrete
definitions for rational arithmetic.

Note that in the definition of the arithmetic and comparison functions the parameter c
must be explicitly converted from type const Ring* to type const Rational*. Use
dynamic_cast<const Rational*>(c) to receive a pointer to a Rational object (re-
spectively 0, if the conversion is not possible; the program may then be aborted with an
error message).

3. Implement a concrete class Polynomial

class Polynomial: public Ring {
public:

1

// polynomial with degree+1 coefficients and given variable name
Polynomial(string var, int degree, Ring **coeffs);

// destructor
virtual ~Polynomial();

// evaluate this polynomial on c
const Ring* eval(const Ring *c) const;

};

which implements univariate polynomials with generic coefficient types (i.e. coefficients
that are represented by a concrete subclass of class Ring). The implementation proceeds
in analogy to the the class Polynomial of Exercise 2 except that the internal array holds
Ring* values,i.e., pointers to objects of (a subclass of) class Ring.

Class Polynomial is itself a concrete subclass of Ring; it thus overrides the abstract (pure
virtual) operations of class Ring by concrete definitions for polynomial arithmetic. The
class also overrides the virtual destructor of class Ring to free the array that was allocated
when the polynomial was constructed.

Please note that in this exercise (unlike Exercise 2), class Polynomial does not know and
use the class Rational described above!

4. Derive from Polynomial the concrete class PolyRat whose objects denote polynomials
with rational number coefficients. The interface of this class supports (by inheritance) the
same operations as those of Polynomial but provides a constructor

PolyRat(string var, int degree, Rational **coeffs)

This constructor creates by a declaration Ring* c[degree+1]; an array of Ring* point-
ers into which the pointers of coeffs are copied; this array is then passed to the construc-
tor of the parent class to initialize the polynomial (this auxiliary array is needed, because
a Rational** value cannot be converted to type Ring**, even if a Rational* value can
be converted to type Ring*).

Please note that only the constructor needs to be implemented, all other operations are just
inherited!

5. Also derive from Polynomial the concrete class PolyRat2 whose objects denote bi-
variate polynomials with rational number coefficients (in recursive representation). The
interface of this class provides a constructor

PolyRat2(string var, int degree, PolyRat **coeffs)

Please note again that only the constructor has to be implemented!

Hint: please override in class Polynomial the operation str() such that the text repre-
sentation of a polynomial is surrounded by parentheses (); an object of type PolyRat is
then printed like in

((3*y+1)*x^2+(2*y^2+5*y)*x+(2*y^4)*3)

Test classes Rational, PolyRat, and PolyRat2 in a comprehensive way (several calls of each
function) in a similar way as in Exercise 2 (print the function results and show the output).

2

