
Computer Systems (SS 2015)
Exercise 3: May 4, 2015

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

April 17, 2015

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 3: Polygon Courses

A polygon course is a sequence of points connected by straight lines.

1. Write a class Polygon that implements polygon courses with the following public inter-
face:

class Polygon
{
public:
// create and destroy polygon
Polygon();
~Polygon();

// add point with coordinates (x,y) to polygon
// line from last point to this one has color c (default black)
void add(double x, double y, unsigned int c = 0);

// draws the polygon at absolute coordinates (x0,y0) scaled by factor f;
// thus every point (x,y) is drawn at position (x0+x*f, y0+y*f)
void draw(double x0, double y0, double f);

};

The class internally maintains a linked list that holds the points of the polygon (objects of
some user-defined class Point) together with the colors of the lines leading to the points;
for drawing the polygon, this list is to be traversed only once.

2. Derive from Polygon a class

class PenPolygon: public Polygon
{
public:
PenPolygon(double x = 0, double y = 0,
double a = 0, double c = 0);

void move(double r);
void turn(double a);
void color(unsigned int c);

}

The constructor creates an empty polygon; the polygon maintains a “pen” with color c
which is positioned at point (x , y) and is oriented in direction a (angle in radian, 0 is right,
π/2 is up). By the operation move() the pen is moved distance r into the current direction,
adding a line in the pen color to the polygon; by turn(), the pen changes orientation by
adding angle a to the current angle; by color() the color of the pen is changed to c.

The class shall make use of the data representation of Polygon, i.e. the class must com-
pute the coordinates of the individual points of the polygon and call add() to add them to
the polygon.

1



3. Derive from PenPolygon a class

class SpiralPolygon: public PenPolygon
{
public:
SpiralPolygon(int n, int s, int c,
double x, double y, double r, double a,
double r0, double a0);

}

whose constructor creates a spiral-shaped polygon with n lines; the spiral starts at position
(x , y) with a line of length r in direction a; the length of every subsequent line is r0 times
the length of the previous line, the angle of every subsequent line is a0 plus the angle of
the previous line. For instance, with n = 8, r0 = 1, and a0 = π/4 we get a octagon,
chosing n = 80, r0 = 1.1 and a0 = π/4 gives an outward spiral that rotates ten times
with eight lines per rotation. The polygon is is drawn in a random color as generated by a
random number generator which is initialized with seed s; this color is changed randomly
every c lines.

4. Finally write a class

class Picture
{
public:
Picture();
void add(Polygon *p);
void draw(double x, double y, double w, double h, double f = 1.0);

}

A Picture object represents a rectangular picture which consists of a set of polygons
implemented by a linked list of (pointers to) Polygon objects. The set is initially empty;
the function add() adds polygon p to the list. The function draw() draws the picture
with a rectangular bound with left upper corner (x , y), width w and height h; all polygons
are drawn shifted by the position x , y and scaled with factor f .

Write a program that tests these classes by creating a picture, populating it with spirals and
drawing the picture in several locations and sizes.

2


