
Computer Systems (SS 2015)
Exercise 2: April 20, 2015

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

March 16, 2015

The exercise is to be submitted by the denoted deadline via the submission interface of the
Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the
following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise
and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indenta-
tions are appropriately preserved) and an appropriate font size such that source code
lines do not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution
has unwanted problems or bugs, please document these explicitly (you will get more
credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.



Exercise 2: Univariate Polynomials

A univariate polynomial
∑n

i=0 ci · x
i of degree n can be represented by its n + 1 coefficients

c0 , . . . , cn . The goal of this exercise is to implement a corresponding class Polynomial whose
objects represent univariate polynomials with rational coefficients; a coefficient is represented
by an object of class Rational.

In more detail, the implementation shall be as follows:

1. Implement a class Rational with the following interface:

class Rational {
public:
// rational with numerator n and denominator d (default 0/1)
Rational(int n=0, int d=1);

// numerator and denominator
int numerator() const;
int denominator() const;

// string representation of this rational
string str() const = 0;

// sum and product of this rational and c
const Rational operator+(const Rational& c) const;
const Rational operator*(const Rational& c) const;

};

A rational shall be represented in a canonical form where the denominator is positive
and numerator and denominator do not have any non-trivial common divisor (use the
Euclidean algorithm for reducing). If the constructor is called with d = 0, the program
aborts.

2. Implement a class Polynomial with the following interface:

class Polynomial {
public:
// polynomial with degree+1 coefficients of given numerators/denominators
// (coefficient n[i]/d[i] belongs to monomial with exponent i)
Polynomial(int degree, int* n, int* d);

// constructor with degree+1 coefficients of given rationals
// (coefficient c[i] belongs to monomial with exponent i)
Polynomial(int degree, Rational* c);

// destructor
~Polynomial();

// string representation using x for the variable
// (don’t show zero coefficients unless polynomial is zero)

1



string str(const string& x) const;

// degree of this polynomial
int degree() const;

// evaluate this polynomial on m/n
const Rational eval(int m, int n) const;

// sum and product of this polynomial and p
const Polynomial operator+(const Polynomial& p) const;
const Polynomial operator*(const Polynomial& p) const;

};

The class stores internally an array of the polynomial coefficients as Rational objects
where the leading coefficient is not zero (the zero polynomial is represented by an array of
length zero); the constructors thus ignore trailing zeros in the given arrays. The coefficient
array is to be allocated on the heap; the destructor of the class thus frees this array. Please
note that the second constructor does not store the array passed as an argument as the
result array!

When printing a polynomial, only the monomials with non-zero coefficients are printed
(except when the polynomial is zero; in this case “0” is printed).

When adding/multiplying two polynomials, first allocate a temporary Rational array for
the coefficients of the result polynomial and then fill this array with the appropriate coeffi-
cients; finally construct the result polynomial from this array using the second constructor
and free the array.

3. The class thus supports the following operations:

int numerators[] = { -5, 2, 0, -3 };
int denumerators[] = { 2, 3, 1, -6 };
Polynomial p(3, numerators, denumerators);
cout << p.str("x"); // 1/2 x^3 + 2/3 x - 5/2
const Rational r = p.evaluate(1, 2); // evaluate for x = 1/2
cout << r.str();
Polynomial q = p+p; cout << q.str();
Polynomial r = p*q; cout << r.str();

Test each classes Rational and Polynomial in a comprehensive way (several calls of each
method) including also the calls shown above (print the results and show the program output in
the deliverable).

2


