Debian/GNU Linux Networking

Basics of the Networking

Károly Erdei

October 15, 2014

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCP
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCF
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

Network of Networks

Internetwork:

- Connects multiple WANs/LANs across the globe
- LANs/WANs connected to Internetworks by routers or gateways
- Each attached network may have different protocol
 - Protocol = language spoken by computers on network
- Any computer in any network can communicate with any other computer in any other network independently of physical network technologies
 - Communication based on higher level protocols

The Internet

- A worldwide internetwork that uses the TCP/IP protocol suite
- It is a packet switching network (data will be splitted in packets)

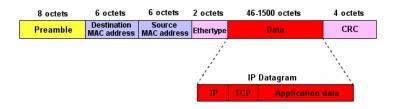
Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCF
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

MAC / physical / hardware Address

- each Ethernet station is given a single 48-bit unique MAC address
- is used both to specify the destination and the source of each data packet
- is six groups of two hexadecimal digits, separated by or :
 - first three octets identify the organization
 - arbitrary but unique next three octets assigned by the organisation
- is used/valid only in LAN (network segment)

technologies which use MAC address


Ethernet. 802.11 wireless networks. Bluetooth

ARP - Address Resolution Protocol

converst IP addresses to MAC addresses

Ethernet Frame

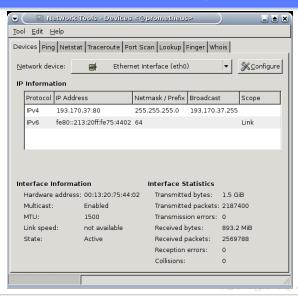
Ethernet - MAC address

How to find a local MAC addresses

Linux - command line with /sbin/ifconfig

UP BROADCAST MULTICAST MTU: 1500 Metric: 1

MS Windows - fastest way


■ in DOS Window by means of ipconfig /all

Linux - all units in the network segment

- arp -a (only one line listed as example):
 - crutch.risc.uni-linz.ac.at (193.170.37.76) at 00:16:35:37:5C:EC [ether] on eth0

Ethernet - MAC address

How to find a local MAC addresses - Linux with gnome-nettool

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCF
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

IP - The Internet Protocol

Features of IP

- No delivery guarantuees
 - Connection-less
 - Unreliable: packets may be lost, duplicated, reordered
 - packets oriented
- defines IP addresses and routing in the network

RFC - Request for Comments

- description of some feature, object, protocol, etc. in the Internet
- each RFC is the base to implement some feature
 - https://en.wikipedia.org/wiki/List_of_RFCs
 - https://tools.ietf.org/html/rfc15

IP Addressing

RFC 1166: Internet Numbers

- An IP address is a 32 bit unsigned integer
 - There exist $2^{32} \approx 4$ billion IP addresses
- Representation in dotted decimal notation
 - \blacksquare X.X.X.X; Each X is a decimal number, a byte of the address
- Example: 128.10.2.30: 10000000 00001010 00000010 0011110
- Network classes (net.hosts): A(1:3), B(2:2) and C-class (3:1)

Some addresses are reserved for special purposes

- net.0: the "network" address (not a particular host) 193.170.37.0
- default gateway: an address in this network: 193.170.37.1
- broadcast address: net.255
- 0.0.0.0: "this" host
- 127.0.0.1: loopback, localhost, lo (not sent across network, for testing local IP setup)

IP Datagram Structure

Version	Header Length	Type of Service	Datagram Length	
ID)	Offset	
TTL Upper Layer Protocol			Checksum	
Source IP Address				
Destination IP Address				
Options				
Data				

Routers and Gateways

Router: a networking device

- a computer whose software and hardware are usually tailored to the tasks of routing and forwarding packets
- transfers packets only across networks using similar protocols
- contains a specialized operating system (e.g. Cisco's IOS)
- has multiple network connections
- Types of routers
 - small units (DSL router) ISPs big multiprocessor unit

Private Networks - Private IP Addresses

The addresses, which can be used by everyone

Private Internet Addresses

- May be used internally in any organization
- routers have to discard any packets with a private IP address in the IP header
- gives security for private networks they are not available from the Internet
- Networks
 - Home network: 192.168.0.0 192.168.255.255 (Cable/DSL router: 192.168.1.1)
 - Company network: 172.16.0.0 -172.31.255.255
 - Big Company network: 10.0.0.0 10.255.255.255

Checking connections

- ping
- traceroute

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCP
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

Transport layer services

- Connection oriented
 - for data delivery first a connection must be established
- Same Order Delivery
 - data will arrive in the same order it has been sent
- Reliable data transmission
 - retransmit corrupted packages; error detection code, packet acknowledgement
- Byte orientation: not packages, but stream of byte sent
- Introducing the term port
 - port addresses multiple entities on the same location

TCP - Ports

The problem of the applications on a host to communicate

- more programs run on a computer
 - sendmail, webserver, name server, ftp-, pop server, etc.
- the computer has one unique IP address
- how to deal with the application, how to differ them
- introducing ports is the solution
 - analogy: postal address as IP address; appartement number or name is the port number

Ports

- to each services in the Internet/Computer a port is assigned
 - ports are identified by the port number
 - see in Linux the /etc/services file for numbers/services allocation
 - port number is a part of TCP packets header
- a program implement a service
 - the program LISTEN on the port for a communication

etworks Ethernet Internet Protocol TCP DHCP Check Network Connecting PCs

TCP - Ports

Jnix port in /etc/services

ftp-data	20/tcp		
ftp	21/tcp		
ssh	22/tcp		# SSH Remote Login Prot
telnet	23/tcp		
smtp	25/tcp	mail	
whois	43/tcp	nicname	
domain	53/tcp		<pre># name-domain server</pre>
domain	53/udp		
finger	79/tcp		
WWW	80/tcp	http	# WorldWideWeb HTTP
WWW	80/udp		# HyperText Transfer Pr
pop3	110/tcp	pop-3	# POP version 3
imap2	143/tcp	imap	# Interim Mail Access P
https	443/tcp		# http protocol over TL
https	443/udp		
ftps	990/tcp		
telnets	992/tcp		# Telnet over SSL
imaps	993/tcp		# IMAP over SSL
pop3s	995/tcp		#POP-3 over SSL oce

Example: Sending email per smtp port (1)

```
hu: "> telnet bullfinch 25
Trying 193.170.37.222...
Connected to bullfinch.risc.uni-linz.ac.at.
Escape character is '^]'.
220 bullfinch.risc.uni-linz.ac.at ESMTP Sendmail 8.13.8/8.13.8/Debian-3
Mon, 3 Nov 2008 15:19:26 +0100; (No UCE/UBE) logging access from: i
uhu37.risc.uni-linz.ac.at(OK)-ke@uhu37.risc.uni-linz.ac.at [193.170.37.
helo ich-bin-s
250 bullfinch.risc.uni-linz.ac.at Hello ke@uhu37.risc.uni-linz.ac.at
[193.170.37.115], pleased to meet you
mail from: k.erdei@risc.uni-linz.ac.at
250 2.1.0 k.erdei@risc.uni-linz.ac.at... Sender ok
rcpt to: karoly.erdei@jku.at
250 2.1.5 karoly.erdei@jku.at... Recipient ok
```

Example: Sending email per smtp port (2)

Connection closed by foreign host.

```
data
354 Enter mail, end with "." on a line by itself
this is an email sent by telnet 25 command from the laptop to the mail
server bullfinch.risc... demonstrating how smtp works
.
250 2.0.0 mA3EJQr4014077 Message accepted for delivery
quit
221 2.0.0 bullfinch.risc.uni-linz.ac.at closing connection
```

uhu:~>

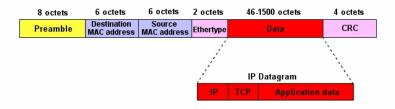
Example: Downloading file from the WWW server

Telnet to port 80 on the Web server

hades:www!11> telnet www 80
Trying 193.170.37.138...
Connected to crow.risc.uni-linz.ac.at.
Escape character is '^]'.
GET http://www.risc.jku.at/proba.txt

Hello! This is a test file. To get it per port access with telnet. It succeeded to get this file per port access from the web server. Great!

Connection closed by foreign host. hades:www!12>


TCP Datagram Structure

Source Port	Destination Port	
Sequence Number		
Acknowledgement Number		
Flags	Receiver Window Size	
Checksum	Urgent Data	
Options		
Data		

IP Datagram Structure

Version	Header Length	Type of Service	Datagram Length	
ID)	Offset	
TTL Upper Layer Protocol			Checksum	
Source IP Address				
Destination IP Address				
Options				
Data				

Ethernet Frame

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCF
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

DHCP - Dynamic Host Control Protocol

Client - Server application

DHCP Client - Server communication flow

- DHCP is used to obtain parameters necessary for IP networking
- client: broadcasts a DHCPDISCOVER request
 - Asks for a DHCP server on the network segment
 - Asks for a lease and for an IP address
 - Lease: the length of time for the allocation is valid
- server: sends a DHCPOFFER message
 - Checks if the MAC of client is registered
 - Marks an IP from the spool
- client: broadcasts a DHCPREQUEST on the network
 - The IP of the server is in the packet
- server: sends the client the data DHCPDATA
 - Reservers the IP for the time of the lease
 - Other servers delete the mark for the IP

DHCP - Dynamic Host Control Protocol

DHCP server

- has a pool of IP addresses
- manages other network parameters for networking by client
 - options are widely configurable
- checks the MAC of the client, if configured
- lease time is configurable (max;min)

Client requests periodically

- Client has to request again before lease time is over
 - a new IP or request the same IP
- By booting must suspend other processes
 - without IP no network connection

DHCP server is implemented in Home/DSL/Cable routers

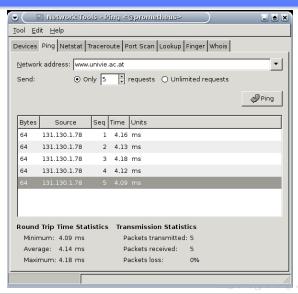
DHCP - Dynamic Host Control Protocol DHCP Server data table

Assigned data by DHCP server at RISC

- Network configurations parameter at RISC
 - IP Address
 - Lease
 - Domain Name (risc.uni-linz.ac.at)
 - Default Gateway address (193.170.38.1)
 - Name server IP address (193.170.37.225)
 - Name server IP address (193.170.37.224)
 - WINS servers (phoebe.risc.uni-linz.ac.at)
 - WINS servers (samba-dc1.risc.uni-linz.ac.at)
 - NTP servers (time.risc.uni-linz.ac.at)
 - SMTP server (mail.risc.uni-linz.ac.at)
 - POP server (pop.risc.uni-linz.ac.at)

NAT - Network Address Translation

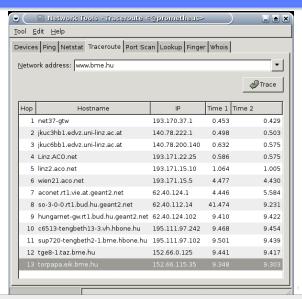
How NAT works


- general definition
 - a technique that hides an entire address space, usually consisting of private network addresses (RFC 1918), behind a single IP address in another, (often) public address space.
- implemented in a router connected to private/public network
 - uses translation tables to map/remap the addresses
 - translation table are created by the outgoing requests
 - rewrites the outgoing IP packets as sent from the router
 - Assigns to each connection a different source port
- NAT introduces complications in communication, performance
 - it has to rewrite checksum, reassemble packets, fragment them again, etc.
- The NAT box the Internet router
 - Cable/DSL router: a firewall is always integrated

Agenda

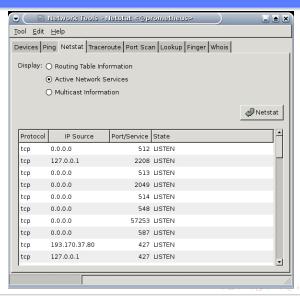
- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCF
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Checking Network Connections

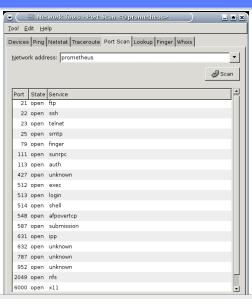

gnome-nettool, ping, remote

Networks Ethernet Internet Protocol TCP DHCP Check Network Connecting PCs

Checking Network Connections


gnome-nettool, traceroute

Networks Ethernet Internet Protocol TCP DHCP Check Network Connecting PCs


Network Connections - Active Services

gnome-nettool, netstat

Network Connections - portscan

gnome-nettool, local

Agenda

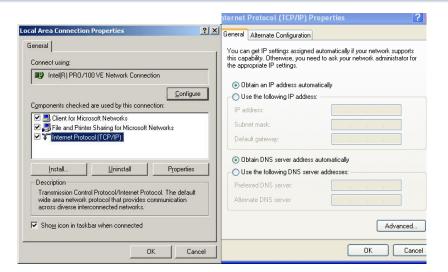
- 1 Networks
- 2 Ethernet
- 3 Internet Protocol
- 4 TCF
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Connecting Computers to the Network

Connecting automatically by DHCP

- the most confortable solution
 - if DHCP server is available for the domain, for the LAN segment
 - if the DHCP server is not restricted to known hosts
 - the hardware address (MAC address) of ethernet/wireless interface needed for access

Connecting manually with fixed IP address


- this solution always works (local help (IP) needed)
- needs more knowledge about the OS, configuration files, etc.
- the only possibility if no DCHP server available

Connecting Computers to the Network Using DHCP

Linux Configuration with network-admin - root access necessary

		lnterface	properties 🕱
• Network settings	LAX	Connection	
Location:	[+]	Interface name: e	th0
Connections General DNS Hosts		☑ E <u>n</u> able this connection	
Wireless connection The interface eth1 is not configured	<u>R</u> Properties	Connection setting	gs .
Ethernet connection	& Activate	C <u>o</u> nfiguration:	DHCP [▼
The interface eth0 is active	② Deactivate	IP address:	192.168.1.115
Modem connection The interface ppp0 is not configured		<u>S</u> ubnet mask:	255.255.255.0
		<u>G</u> ateway address:	192.168.1.1
Default gateway device: eth0	<u>C</u> ancel <u></u> <u>O</u> K	<u>Ö</u> <u>H</u> elp	X Cancel <u>✓ O</u> K

Connecting Computers to the Network by DHCP for MS Windows

Connecting Computers to the Network The Name Server

Configuration in Linux with network-admin

• Network settings	L≜×
Location: liwest	[▼
Connections General DNS Hosts	
DNS Servers	
212.33.55.5	♣ <u>A</u> dd
212.33.32.160	<u>⊇</u> elete
Search Domains	
mta.liwest.at	♣ <u>A</u> dd
	<u> D</u> elete
₩ Cal	ncel <u>O</u> K

End of Network Basics

Thanks for your attention!