
Formal Methods in Software Development
Exercise 10 (February 2)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

January 23, 2015

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• the deliverables requested in the description of the exercise,

2. the file with the Promela model used in the exercise.

3. the files with the LTL properties (Button “Save As” in the LTL Property Manager).

1

Exercise 10: Model Checking Leader Election in Spin

We consider a system of n processes p0 , . . . , pn−1 and n channels c0 , . . . , cn−1 each of which
may hold at most n messages. Each process pi can send a message to channel c(i+1) mod n and
receive a message from channel c(i+n−1) mod n , i.e., the processes are organized in a unidirec-
tional “ring”.

From time to time a process may desire to be elected the “leader” of the ring. The core require-
ment is that at every moment the ring has at most one leader. We want to ensure this by the
following protocol:

• Every process nondeterministically cycles through the states “idle” (no activity), “wait-
ing” (having requested to be elected the leader), or “leader” (having been successfully
elected the leader).

• If process pi is in state “idle”, it may switch to state “waiting”, i.e., it may request its
election to the leader. For this purpose, it sends its identifier i to its successor in the ring.

• Every process pi in state “idle” or “waiting” is ready to receive a message from its prede-
cessor; if such a message (a process identifier) j is received, it is handled as follows:

– If pi is in state “idle”, it forwards j to its successor.

– If pi is in state “waiting”, there are three cases:

1. If j < i, then pi does nothing (i.e., it discards j).

2. If j > i, then pi forwards j to its successor and switches to state “idle” (i.e., it
has lost the election).

3. If j = i, then pi switches to state “leader” (i.e., it has won the election).

• Every process pi in state “leader” does not receive or send any message; however, it may
switch to state “idle” and thus make room for another leader.

By this protocol, if there are multiple processes simultaneously competing for leadership, the
one with the highest process identifier “wins” the election and becomes the leader.

Your tasks are as follows:

1. Implement above model for n = 5 in Promela. For this, introduce by #define N 5 a con-
stant for the ring size, use a process type proctype p(byte id) (which is instantiated
as p(0),...,p(4)), a global channel array chan c[N] = [N] of { byte }, a type
mtype = {idle, ...} of states, and a global state state array mtype s[N] = idle.

2. Run a simulation for several hundred steps. The simulation must not run into a deadlock.

3. Formulate in Spin LTL the property

Always, if process i is the “leader”, no other process is also leader.

and check it for i = 0 and i = 4. Analyze the results in detail and explain whether they
indicate an error in your model or not.

2

4. Formulate in Spin LTL the property

Some process becomes the “leader” infinitely often.

and check it. Analyze the results in detail and explain whether they indicate an error in
your model or not.

5. Formulate in Spin LTL the property

Every process becomes the “leader” infinitely often.

and check it. Analyze the results in detail and explain whether they indicate an error in
your model or not.

6. Formulate in Spin LTL the property

Some process eventually becomes the “leader” permanently.

and check it. Analyze the results in detail and explain whether they indicate an error in
your model or not.

7. Extend your model by an additional state “busy” and allow every process in state “idle” to
switch non-deterministically either to state “busy” (from which it switches back to “idle”)
or “waiting”.

Check in this model again the property

Some process becomes the “leader” infinitely often.

Analyze the results in detail and explain them.

Assume that in the extended model no process remains forever in an “idle”↔“busy” cycle.
Formulate this assumption in LTL and check again above property under this precondition.
Analyze the results in detail and explain them.

Please make sure that the model check truly elaborates the whole state space, i.e., that no mes-
sage error: max search depth too small appears in the output. If such a message should
appear, increase in “Advanced Parameters” the “Maximum Search Depth” such that the message
goes away (if not, a model check result error: 0 is meaningless, because only execution paths
up to a certain length have been investigated).

The deliverables of the exercise consist of

• The completed Promela model.

• Screenshots of (the final parts of) the simulation runs.

• The LTL properties (PLTL formulas plus definitions of the predicates).

• The output of Spin for each model check.

• Screenshots of counterexample simulations (if any).

• For each model check, an interpretation (did the requested property hold or not and why)?

Some hints/reminders on Promela are given below:

3

• The Promela version of if (E) C1 else C2 is

if
:: E -> C1
:: else -> C2
fi

The Promela version of if (E) C is

if
:: E -> C
:: else -> skip
fi

The Promela version of while (E) C is

do
:: E -> C
:: else -> break
od

In all cases, if you forget the else branch, the system will deadlock in a state that is not
allowed by all the conditions in the other branches.

• The expression c ? [M] is true if and only if a channel c holds a message of type M .
The statement c ? M will then remove the message. A typical application is in

do/if
:: cond && c ? [M] ->
c ? M;
...

:: ...
od/fi;

where in a certain situation only a certain kind of message may be accepted.

• In the attached Promela model, the processes receive identifiers 1,2,3,. . . i.e.

p[1]@label

indicates that p(0) is at the position indicated by label (see also the simulations for the
identifiers of the individual processes).

4

