
Formal Methods in Software Development
Exercise 2 (November 10)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

September 8, 2014

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• the deliverables requested in the description of the exercise,

• a (nicely formatted) copy of the ProofNavigator file used in the exercise,

• for each proof of a formula F, a readable screenshot of the RISC ProofNavigator
after executing the command proof F,

• an explicit statement whether the proof succeeded,

• optionally any explanations or comments you would like to make;

2. the RISC ProofNavigator (.pn) file(s) used in the exercise;

3. the proof directories generated by the RISC ProofNavigator.

Email submissions are not accepted.

1

Exercise 2: Searching for the Maximum of an Array

Take the specification

{a = olda ∧ n = oldn ∧ 1 ≤ n ≤ length(a) ∧ (∀j : 0 ≤ j < n ⇒ a[j] ≥ 0)}
. . .
{a = olda ∧ n = oldn ∧

(∀j : 0 ≤ j < n ⇒ m ≥ a[j]) ∧ (∃ j : 0 ≤ j < n ∧ m = a[j])}

which demands to find in an integer array a the maximum m of all elements from the initial
segment a[0 . . . n − 1] of length n ≥ 1 which holds only non-negative integers.

We claim that the specification is implemented by the following program:

m := 0; i := 0
while i < n do
if a[i] > m then
m := a[i]

endif
i := i+1

end

The correctness of this claim can be verified by using a loop invariant of the following shape:

a = olda ∧ n = oldn ∧ 1 ≤ n ≤ length(a) ∧ (∀j : 0 ≤ j < n ⇒ a[j] ≥ 0) ∧
(. . . ≤ i ≤ . . .) ∧ (i = 0⇒ m = . . .) ∧
(∀j : 0 ≤ j < i ⇒ . . .) ∧ (i > 0⇒ ∃ j : 0 ≤ j < i ∧ . . .)

Complete the invariant, define a termination term, and use both to produce the five verification
conditions for proving the total correctness of the program (one for showing that the input con-
dition of the loop implies the invariant, one for showing that the invariant and the negation of
the loop condition implies the output condition, two for showing that the invariant is preserved
and the value of the termination term is decreased for each of the two possible execution paths
in the loop body, one for showing that the invariant implies that the value of the termination
term does not become negative). Explicitly show the derivation of the conditions (not only the
final result). Don’t try to “guess” the condition(s) but derive them by application of the Hoare
axioms respectively of the predicate transformer calculus!

Please note that the input condition of the loop is not the same as the input condition of the
specification!

Verify these conditions in the style of the verification of the “linear search” algorithm presented
in class with the help of the RISC ProofNavigator. For this, write a declaration file with the
following structure

newcontext "exercise2";

// arrays as presented in class

2

...

// program variables and mathematical constants
a: ARR; olda: ARR;
x: ELEM; oldx: ELEM;
...

Define predicates Input, Output, and Invariant and a value Term, where (as shown in class)
Invariant and Term should be parametrized over the program variables. Then define five
formulas A, B1, B2, C, D describing the verification conditions and prove these.

All proofs can be performed with the commands expand, scatter, instantiate, split, and
auto (it may be sometimes wise to use the goal command to switch the goal formula).

3

