
CHAPTER 9: SOLVING LINEAR SYSTEMS 229

!nl
bnsl

5

ö
8.

U)

FIGURE 9-11 Speedup (sotid tine) and ,
parallelizability (dotted line) of
parallel odd-even reduction on
Sequent Symmetry on a tridiagonal
system of size 65,636.

4
Processes

As Fig. 9-11 makes clear, although the algorithm is easily parallelizable, its
speedup is poor. Let's explore the reasons for this.

The total number of floating-point operations performed by the sequential
algorithm of Fig. 9-7 is

n - l n

Io*I :* r :en-8

n^ (e"-8 \ :1
, -oc \ l8n - 8 logn -27) 2

(e.r9)
i = l i =2

The total number of floating-point operations performed by the odd-even
reduction algorithm is

1 3 (n - 2 - (l o g n - 1)) + 7 (l o g n - 1) + I + 5 (n - Z - (l o g n - L)) (9 . 2 0)

*3(logn - 1) : I8n - Slogn - 27

Taking the ratio of equations 9.19 and,9.20

':i'((ä'r:) +z) +r*'"f'(8") .r:

(e.2r)

we should not expect a parallel implementation of odd-even reduction to
exhibit an efficiency gr€ater than 50 percent.

9.4 GAUSSIANELIMINATION

In this section we describe the parallelization of gaussian elimination, a well-
known algorithm for solving the linear system Ax : b when the matrix a has
nonzero elements in arbitrary locations. Gaussian elimination reduces ax : b

F

230 pARALLEL coMpulNG: THEoRy AND pRAclcE

to an upper triangular system Tx : c, at which point back substitution can be
performed to solve for x.

Recall that we can replace any row of a linear system by the sum of that
row and a nonzero multiple of any row of the system. We used this technique
in Sec. 9.3 to eliminate nonzero elements from below the main diagonal in
tridiagonal systems. Gaussian elimination uses the same technique.

Figure 9-12 illustrates one iteration of the algorithm. All nonzero elements
below the diagonal and to the left of column I have already been eliminated.
In step I the nonzero elements below the diagonal in column I are eliminated
by replacing each row j, where i + | < j < n, with the sum of row j and
-a1,ilai,i times row l. After n - 1 such iterations, the linear system is upper
triangular.

In the straightforward gaussian elimination algorithm just Qescribed, row I is
the pivot row, i.e., the row used to drive to zero all nonzero elements below the
diagonal in column l. This approach does not exhibit good numerical stability
on digital computers. However, a simple variant, called gaussian elimination
with partial pivoting, does produce reliable results. In step I of gaussian
elimination with partial pivoting, rows i through n are searched for the row
whose öolumn i element has the largest absolute value. This row is swapped
(pivoted) with row i. Here the algorithm uses multiples of the pivot row, now
stored as row i, to reduce to zero all nonzero elements of column I in rows
l * l t h o u g h n .

A sequential gaussian elimination algorithm appears in Fig. 9-13. Rather
than actually swapping the pivot row and row i in each iteration, the algorithm
makes use of indirection. Array element piuotlil contains the iteration number
in which row I was used as the pivot row. Another afiay is introduced to make
it easy to determine if a particular row has been used as a pivot row; alray
element markedlil is set to 1 when row I is chosen as a pivot row.

Let's determine how well-suited gaussian elimination is to parallelization.
First, we count every arithmetic operation and comparison involving floating-

FIGURE 9-12 During iteration I of the gaussian elimination algorithm, all elements in column I for each
row I below row i are driven to 0 by subtracting a multiple of row I from row l.

Elements that will not be changed

Pivot row

Elements alreadv driven to 0
Elements that will be chansed

Elements to be driven to 0

lrI

GAUSSTAN.ELTMTNATTON (SrSD):

Global
a[l . . .n] t l . . .n l
bl r . . .n l
markedl l . . .n l
p iuot l l . . .n l
picked

CHAPTER 9: SOLVING LINEAR SYSTEMS 231

{Size of linear system}
{Coefficients of equations}
{Rigllt-hand sides of equations}
{lndicates which rows have been pivot rows}
{lndicates iteration each row was used as pivot}
{Row picked as pivot row}

begin
f o r i < - 1 t o / r d o

markedli) <- 0
endfor
f o r i < - l t o / , - 1 d o

tmp <- 0
for; <- i to n do

it markedUl : 0 and lati l l t] l > tmp lhen
tmp <- latj lUll
picked <- j

endif
endfor
markedfpickedl <-- I
piuotfpickedl <- i
for; <- 1 to r? do

i f markedU l : 0 then
tmp <- aullil / a[pickedlli]
t o r k < - i + l t o n d o

aul[k] <-- afjllk] - a[pickedllkl x tmp
endfor
bUl <- bul - b[k] x tmp

endif
endfor

endfor
f o r i < - l t o n d o

i t m a r k e d l i l : O t h e n
pivotl i l <- N
break

endif
endfor

end
FIGURE 9-13 Sequential gaussian elimination algorithm with partial pivoting. The algorithm assumes

the linear system is nonsingular, i.e., has a solution.

F

232 PARALLEL ooMPUTING: THEoRY AND PRAcrlcE

, ä , (' * , ä , '))

:

n

\-
/J

; - ; ! l

(2n - 2i+:l) : (9.22)

n - l ^ \

Y (zn ' q4n I | +2 i2 - 4 i h + 1)) :
L \ - " I
j - 1

2 n 3 + 3 n 2 - 2 n - 3

J

{,

Fl(

Ftc

I

FIGURE 9-14 Data dependencies durino a
single iteration of the gauäsian
elimination algorithm. During
iteration i the column i element
of every unmarked row must
be examined to determine the
identity of the pivot row picked.
Once the pivot row has been
identified, every element a[j]lkl
of every unmarked row 1 mü-st
be modified, which requires
accessing aljl[i], afpickedl[il,
and a[picked]lkl.

CHAPTER 9: SOLVING LTNEAR SYSTEMS 233

Unmarked row j

Pivoltow picked

FIGURE 9-15 A row'oriented decompogi.tion of the data for the multicomputer{argeted gaussian
elimination algorithm. In this example n : 16 and p:4.

bA
Po

P,

e
J

P,

atjltil atjltkl

a[picked][i] afpicked][k]

0
1
2
3

F
E

F
E

5
6
7

E
E

F
E

2g4 PARALLEL ooMPUTING: THEoRY AND PRAcrlcE

ROW.ORIENTED.GAUSSIAN.ELIMINATIoN (HYPERCUBE

MULTICOMPUTER):

Local n {Size of linear sYstem}

aU...nl plll-..n1 [Coefficients of. equations]

blt...n/pl inignt-nand sides of equations)

narkedfl.-.n/pl iinärcates which rows have been pivot rows]

pit:otlr...n/pl ii;üi;t iteration each row was used as pivot]
-picked

{Row Picked as Pivot rowl

rnagnitude {Pivot value}
winner iProcessor controlling pivot rowl

i , j

4 2 , w h e r e t < i d < P d o /

{lnitially no rows have been used as pivot rows}

for i <- | lo nlP do
markedlil <- O

endfor
l o r i < - l t o n - 1 d o

{Each processor finds Gandidate for pivot row}

magnitude <- 0
for I <- i to n/P do"rt"rnarkedlif ' l

o and lati lt; l l > magnitudelhen

magnitude <- laUl[,] l
picked <- j

endif
endfor
usinneT <- iiJ

töuinament reduclion determines globally best pivot rowl

urÄijöuiuAMENT (i d' magnitude' winner\-

li ii = winner lhen marLedlpicneal <- | piuotfpickedf <- i

l o r i < - i + 1 t q / , d o
tmp.uect orljl +-' atrPi ckedlUl

tmp.vectorln * 1l <- blPickedl

endfor
endif

hYPercube multicornputer'
FIGI RE $'16 Part one of a parallel.gaussian -elimination

algorithm'for' a

assumi ngä ä,äädi äecompoöition of the- coeff icient matrix.

begin
for all

FG

I

FIGURE 9-17

CHAPTER 9: SOLVING LINEAR SYSTEMS 235

{Processor owning pivot row broadcasts it to other processors}
HYPERCUBE.BROADCAST (td, uinner, tmp.uectorl(i + 1)..(n + 1)l)

{Processors eliminate column i values in their unmarked rows}
for ; <- | to nlp do

if marked[j] :Othen
tmp <- atjl[i l / tmp.uectorlil
f o r k < - t + l l o r ? d o

a.tjllkl <- aljllkl - tmp.uectorfkl x tmp
endfor
bljl ,- btjl - tmp.uectorfn-lll x tmp

endif
endfor

endfor

{Locate row never used as a pivot row}
for i <- I lo n/p do

i l m a r k e d f i l : O t h e n
piuotlil <-- n
break

endif
endfor

endfor
end

Part two of parallel gaussian elimination algorithm for a hypercube multicomputer,
assuming a row-oriented decomposition of the coefficient matrix.

can update the values of the umarked rows they control. Pseudocode for this
algorithm appears in Figs. 9-16 and 9-I7.

We call the processor interaction to determine the pivot row a tournament,
because we are interested in the identity of the pivot row (the winner) more than
the magnitude of the value stored at column i in the pivot row (the score). If
we are interested in the identity of the processor with the largest value, we call
the interaction a max-tournament. If we are interested in the identity of the
processor with the smallest value, we call the interaction a min-tournament.
We can implement a tournament algorithm as a simple variant of the reduction
algorithm. Figure 9-18 illustrates max-tournament for a hypercube. At each
step of the algorithm, two variables are maintained. Variable ualue contarns
the largest value encountered so far, and variable winner contains the number
of the processor submitting that value. Although the pseudocode expresses the
exchange of these values as two message-passing steps, a real implementation
would undoubtedly combine these values into a single structure that could be
passed all at once.

A different distribution of data str.uctures results in a different multicomputer
algorithm. For example, if we assign to each processor an interleaved grotp

F

236 PARALLEL CoMPUTING: THEoRY AND PRAoTIoE

MAX.TOURNAMENT (id, ualue, winner)
Reference id. ualue. winner

lThis procedure is called from inside a for all statement]
begin

f o r i < - 0 t o l o g p - I d o
partner <- id @ 2'
lpartnerltmp.ualue + ualue
lpar tner l tmp.winner + winner

"'::,::'T i^:::;::n*
winner <- tmp.winner

endif
endfor

end
FIGURE 9-18 Pseudocode implementing the max-tournament procedure, which computes the identity

of the processor with the laroest value.

of columns of a and a copy of b, then the processors do not need to interact
to determine the pivot row. Instead, during iteration I the processor controlling
column i examines the elements corresponding to unmarked rows and finds the
element with the largest magnitude. No toumament is necessary. This processor
then broadcasts elements of column i and the identity of the pivot row to the
other processors.

Recall that the grain size of a parallel computation is the amount of work
performed per processor interaction. The strategy of maximizing grain size,
which we have already discussed in the context of multiprocessors, is also
important when designing algorithms for multicomputers. (see Design Strategy
5 in Chap. 7.)

On a multicomputer in which message latency is relatively high, maximizing
grain size means minimizing the number of messages sent. In particular, if the
messages are small, it makes sense to combine messages heading for the same
destination processor in order to reduce message passing overhead.

For example, in the row-oriented version of parallel gaussian elimination,
the processor controlling the pivot row must make elements i + 1 through n
of that row available to all the processors executing the for loop. Rather than
broadcast these values one at a time, it makes more sense to broadcast the
entire set of n - i row elements.

Likewise, the column-oriented, parallel gaussian-elimination algorithm
should be implemented so that during iteration I the processor controlling col-
umn i combines the elements of column i and the variable containing the
identity of the pivot row into a single message.

Comparing the row-oriented versus the column-oriented implementations of
gaussian elimination, we see that there is a communication-computation trade-

FIGUI

9,5 THE J/

ffi -llr

CHAPTER 9: SOLVING LINEAR SYSTEMS 237

1024

5t2

l l f)

128

64

1 2 4 8 1 6 3 2 6 4
Processors

FIGURE 9-19 Scaled speedup achieved by a row-oriented paral lel implementation of gaussian
el imination on a 64-processor nCUBE 3200. for l inear svstems of various sizes.

off. In the row-oriented algorithm, processors work together to determine the
pivot row. Given a system of size n and p processors, no processor need ex-
amine more than nlp values. However, once a processor has determined its
local maximum, it must communicate with other processors in order to deter-
mine the global maximum. In iteration i of the column-oriented algorithm one
processor must perform n - I comparisons, but no communication is required.
Both algorithms require a broadcast step after the pivot row has been found.
In the case of the row-oriented algorithm a single row is broadcast. In the case
of the column-orjented algorithm a single column is broadcast.

For any flxed p, as r? -+ oo, the time required by the row:oriented algorithm
to find the pivot row must be less than that required by the column-oriented
algorithm. For this reason, we have chosen to implement the row-oriented
algorithm. Figure 9-19 illustrates the scaled speedup achieved by a row-oriented
parallel implementation of gaussian elimination on a 64-processor nCUBE
3200. for linear svstems of various sizes.

9.5 THE JACOBI ALGORITHM

In the remaining sections of this chapter we will examine iterative methods for
solving systems of linear equations. Iterative algorithms are fiequently used
to solve the large, sparse linear systems generated when working with partial
differential equations, using discrete methods. Iterative methods have two ad-
vantages over direct methods. First, "while these methods do not formally yield
[a solution] in a finite number of steps, one can terminate such a procedure
after a finite number of iterations when it has oroduced a sufficientlv sood

220 pARALLEL coMpurrNG: THEoRy AND pRAclcE

FIGURE 9-2 An insulated rod with fixed end
temperatures T1 and T2. We want to
know the temperatures at points xl , Tr
X2, xs, x4, which divide the bar into
five segments of equal length.

xt -0.5x2
-0.5xr *xz -0.5.r:

-0.5x2 *xz
-0.5-r:

x .
J

rod of conducting material (Fig. 9-2). We assume the rod has a uniform cross
section, so that all points in a cross section have equal temperature. This enables
us to describe temperature as a function of distance from one end of the rod.
We assume the temperatures fi and T2 at the ends of the rod are fixed through
exposure to a constant heat source. Finally, we assume that the rod is swathed
in insulating material. In other words, no heat escapes from the sides of the
rod-all heat transfer is at the ends.

Finding the steady-state temperature at four evenly spaced points .r1, x2, x3,
and x4 can be expressed as a system of linear equations:

: 0.5f1
: 0

-0.5xa : 0
*x+ : 0.5T2

(9.41

Here are three more definitions that we will use later in this chapter.

Definition 9.6. An n x n matix A is diagonally dominant 1f lai.il > El4ilai,il for
l < i < n .

Definit ion 9.7. Annxnmalr ix A is symmetrici f ai1 :aj i for | <i, j <n.

Definition 9.8. An n x n matrix A is positive definite if it is symmetric, diagonally
dominant, and aii > 0 for I < i < n.

9.2 BACK SUBSTITUTION
In this section we describe the parallelization of an algorithm used to solve the
linear system Ax : b where A is upper triangular.

Given a system of linear equations Ax = b, where A is an upper triangular
n x n matrix, the back substitution aleorithm solves the linear system in time
@(n2). Let's view the algorithm by uslng a simple example. Suppose we want
to solve the system

I x t * l x z - l x z + 4 x q : 8
-2x2 -3x3 *Ixa : J

2xz -3x4 : Q
2 x + - 4

(e.s)

We can solve the last equation directly, since it has only a single unknown.
After we have determined that x4 :2, we can simplify the other equations by

FIGUF

CHAPTER 9: SOLVING LINEAR SYSTEMS 221

removing theu xa terms and adjusting the value of their b terms:
lxr +lxz -lxz - 0

-2x2 -34 - 3
2xz -6

Zxa : {

(9.61

Now the third equation has only a single unknown, and a simple division yields
x3 :3. Again, we use this information to simplify the two equations above it:

^
_ 1 .)

2 * t - 6

2x4 : y',

We have simplified the second equation to contain only a single upknown, and
dividing b2by a22 yields x2 : -6. After subtracting xzx ar2 from ä1 we have

rxt
-2xz

(e.8)

and it is easy to see that xt :9.
A sequential algorithm to perform back substitution appears in Fig. 9-3. The

time complexity of this algorithm is @(n2).
How amenable to parallelization is the back substitution algorithm? It is

often difficult to determine the inherent parallelism of an algorithm from a
simple examination of the code. sometimes construction of a task graph can
make the parallelism (or lack of parallelism) apparent. The task graph has these
properties:

lxt llxz
-2xz

(e.7)

- 9
:12

Zxz -6
2x+ - 4

FIGURE 9-3 Sequential back substitution
) algorithm. Given an upper

triangular system of size n, the
algorithm has time complexity
o(n2).

BACK.SUBSTTTUTTON (StSD):

Global n {Size of system}
all...nllI...nl {Elements of A}
b\...nl {Elements of ä}
x1...nl {Elements of x}
i {Column index}
j {Row index}

1. begin
2. for i <- z downto 1 do
3. xlil <- b[il / afilli]
4 . t o r i < - 1 t o , - t d o
5. bU) <- btjl - xlil x aljllil
6. aUllil <- 0 {This line is optional}
7. endfor
L endfor
9. end

F

222 pARALLEL coMpurNG: THEoRy AND pRAcrcE

1. It contains one vertex for every time a variable is assigned a value.
2. It contains one vertex for everv variable that is accessed but never assigned

a value.
3. It contains one edge for every use-def dependency between a variable

referenced on the righrhand side of an assignment statement and a variable
assigned a value on the left-hand side. The edge is directed toward the variable
assigned a value.

We have used these rules to construct a task graph for the back substitution
algorithm applied to an upper triangular system of size 4 (see Fig. 9-4). Note
that there are multiple vertices corresponding to each variable bUl, since the
algorithm repeatedly updates these variables.

Once the task graph has been constructed, we label each vertex according
to the following rules:

1. If no edges enter a vertex, the vertex has label 0.
2. If the vertex has at least one incoming edge, its label is equal to I plus

the maximum label of any vertex associated with an incoming edge.

The labels inside the vertices in Fig. 9-4have been assigned using these rules.
The labels represent the depth of each part of the computation in the task graph.
We have used bold arcs to indicate one of the critical paths of the task graph.
It is evident from the critical path that the elements of -r must be computed
one at a time.

With this knowledge, it is clear our only alternative is to parallelize the inner
for loop. The parallel algorithm, designed for a UMA multiprocessor, appears
in Fig. 9-5. The grain size is small; even in the flrst iteration there are only
n - 1 multiplications and n - 1 subtractions. As the algorithm progresses, the

FIGURE 9-4 Task graph for the sequential back substitution algorithm solving an upper triangular
system of size 4. Elements of vector b are updated, so the graph shows one vertex for
each value of each element. The label inside each vertex indicates the depth of the task
in the graph. A critical path is highlighted.

Versions of b

IEF l|llillttn"*U,

l r
L
I

ö 3

FI

Ft(

512

256

128

o
o

(t

CHAPTER 9: SOLVING LINEAR SYSTEMS 223

BACK,SUBSTITUTION (UMA MULTI PROCESSOR):

Global n
p
all...nll l ...nl
b[r . . .n l
x|l...nl
I

j

{Size of system}
{Number of processes)
{Elements of A}
{Elements of b}
{Elempnts of *}
{Column index}
{Process identifieü
{Row index}

Local

begin
f o r i < - n d o w n t o 2 d o

x[i] <- bti) / qliltil
t o r a l l P t w h e r e l . i . p d o

t o r k < - - j l o i - l s t e p p d o
b[k] <- b[k] - x[il x alk]li)
alkllil <- 0 {This line is optional}

endfor
endforall

endfor
end

FIGURE 9-5 Parallel version of back substitution algorithm suitable for implementation on a UMA
multiorocessor.

number decreases linearly to 1 multiplication and 1 subtraction. For this reason
we cannot expect this algorithm to achieve high speedup'

Figure 9-6 illustrates the speedup achieved by our parallel back substitution
algorithm on a lightly loaded Sequent Symmetry UMA multiprocessor. Note

the Amdahl effect: speedup on any fixed number of processors increases with
the problem size.

FIGURE 9-O Speedup achieved on Sequent
Symmetry by the Parallel back
substitution algorithm solving
triangular systerns of various
stzes,

F

