
Formal Specification of Abstract Datatypes
Exercise 1 (April 7)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

The result is to be submitted by the deadline stated above via the Moodle interface as a .zip or
.tgz file which contains

• a PDF file with

– a cover page with the title of the course, your name, Matrikelnummer, and email-
address,

– a section with the source code of the specifications,

– a section with at least six specification tests (sample reductions),

– optionally any explanations or comments you would like to make;

• the CafeOBJ (.mod) file(s) of the specifications.

Exercise 1: A Simple File System

Write a CafeOBJ specification for a file system consisting of sorts Path, File, and FileSystem.
A Path represents the location of a file by operations

root : Path
path : Path×String→ Path
dirpath : Path→ Path
basename : Path→ String
. . .

where e.g. path “/tmp/t.txt” is represented as path(path(root,“tmp”),“t.txt”); the directory part
of that path is path(root,“tmp”), the base name of that path is ”t.txt”; model the operations
correspondingly.

A File consists of a Path (the location of the file) and a String (the content of the file); it can
be accessed by operations

1



file : Path×String→ File
name : File→ Path
text : File→ String

A FileSystem maps paths to files

emptyFS :→ FileSystem
write : FileSystem×Path×String→ FileSystem
get : FileSystem×Path→ File
read : FileSystem×Path→ String
remove : FileSystem×Path→ FileSystem

An application write(fs,p, t) updates file system fs by creating a file with path p and content t
(overwriting any previous file with that path). An application get(fs, p) returns the file with
path p in fs (if such a file exists); an application read(fs, p) returns the content of this file (if
the file exists). The operation remove(fs, p), removes any entity whose path starts with (or is
identical to) p from the file system.

Write separate tight CafeOBJ modules PATH, FILE, and FILESYSTEMwith the correspond-
ing sorts and operations; whenever necessary, you may introduce auxiliary operations (in addi-
tion to those specified above). In the specification of one operation, try to (re)use already speci-
fied other operations, as far as possible. As a hint, the only operations that demands a “recursive”
specification are get and remove, all other operations can be specified in a “direct” way.

Test the specifications with several reductions, among them the following two (this is not
actual CafeOBJ syntax):

let h = path(path(root,“home”),“ws”)
let u = path(root,“usr”)
let p1 = path(h,“t.txt”)
let p2 = path(h,”u.txt”)
let p3 = path(u,”v.dat”)
let f s1 = write(emptyFS, p1,“hello”)
let f s2 = write(fs1, p2,“hi”)
let f s3 = write(fs2, p1,“greetings”)
let f s4 = write(fs3, p3,“xxx”)
read(fs4,p1)
read(fs4,p2)
read(fs4,p3)
let f s5 = remove(fs4,u)
read(fs5,p1)
read(fs5,p2)
read(fs5,p3)

Give the input and output of each test and your interpretation of the output (does it indicate an
error in your specification or not?). If your specification contains an error, use the trace facilities
of CafeOBJ to detect the source of the error.

2


