
Computer Systems (SS 2014)
Exercise 5: June 2, 2014

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

May 8, 2014

The exercise is to be submitted by the denoted deadline via the submission interface of the Moodle
course as a single file in zip (.zip) or tarred gzip (.tgz) format which contains the following files:

• A PDF file ExerciseNumber-MatNr.pdf (where Number is the number of the exercise and
MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise, and the
author of the solution (identified by name, Matrikelnummer and email address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that indentations
are appropriately preserved) and an appropriate font size such that source code lines do
not break.

3. A description of all tests performed (copies of program inputs and program outputs)
explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your solution has
unwanted problems or bugs, please document these explicitly (you will get more credit
for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 5: Generic Multivariate Polynomials

The goal of this exercise is to implement a class RPoly whose objects represent multivariate poly-
nomials with rational coefficients, as in Exercise 4. However, in contrast to Exercise 4, the imple-
mentation shall be in this exercise based on a class template TPoly; thus genericity is achieved by
parametric polymorphism rather than by inheritance.

In detail, your tasks are as follows:

1. First implement a class template template<class Ring> TPoly such that the objects of
the resulting class represent multivariate polynomials over the domain Ring::type. The
class Ring is assumed to hold by a declaration of form

typedef ... type;

a type Ring::type that represents the carrier set of the ring.

The class provides the same operations as those in Exercise 4 except that all ring operations
are (static) class members and functions and that as function arguments respectively results
Ring::type values (not pointers) are passed respectively returned. For instance, a class func-
tion Ring::str(r) is assumed to return the string representation of a Ring::type value r

and a class constant Ring::zero of type Ring::type shall represent the neutral element of
the ring. Furthermore, the inverse operation has one argument of type Ring::type while ad-
dition, multiplication and comparison have two such arguments. By this setup Ring::type
can be any (also an atomic) type.

The representation and functionality of class template TPoly is analogous to that of class
GPoly of Exercise 4 except that the internal list stores Ring::type values (not pointers) and
that the first arguments of the binary function add shall be of type Ring::type. Since the
class resulting from the instantiation of TPoly is is not designed for inheritance, the operations
need not be virtual.

2. Then implement a class DoubleRing (where DoubleRing::type denotes double) that may
be substituted for Ring; test with this class the functionality of class TPoly<DoubleRing>
which represents multivariate polynomials with floating point coefficients; the operations of
DoubleRing must thus be implemented by the primitive operations on double.

3. Next implement a class RatRing that may be substituted for Ring; declare in this class

typedef Rational* type;

where Rational is a class that encapsulates a rational number; you may reuse here the class
of Exercise 4. Please note that the various class operations of RatRing must thus take and
return pointers to Rational objects; these operations internally call the corresponding oper-
ations in Rational.

4. Finally, use TPoly and RatRing to derive a class RPoly that implements polynomials with
rational coefficients:

class RPoly: public TPoly<RatRing> { ... };

This class shall have the same functionality as the corresponding class of Exercise 4.

Test class RPoly in the same way as in Exercise 4.

2


