
Computer Systems (SS 2014)
Exercise 4: May 19, 2014

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

April 23, 2014

The exercise is to be submitted by the denoted deadline via the submission interface
of the Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which
contains the following files:

• A PDF file ExerciseNumber -MatNr.pdf (where Number is the number of the ex-
ercise and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise,
and the author of the solution (identified by name, Matrikelnummer and email
address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that
indentations are appropriately preserved) and an appropriate font size such
that source code lines do not break.

3. A description of all tests performed (copies of program inputs and program
outputs) explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your
solution has unwanted problems or bugs, please document these explicitly
(you will get more credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 4: Generic Multivariate Polynomials

The goal of this exercise is to implement a class RPoly whose objects represent multi-
variate polynomials with rational coefficients. The implementation shall be based on a
generic polynomial class GPoly which works for arbitrary coefficient types that support
the usual ring operations.

In more detail, the implementation shall work as follows:

1. Take the following abstract class Ring:

class Ring {
public:

// destructor
virtual ~Ring() {}

// string representation of this element
virtual string str() const = 0;

// the constant of the type of this element and the inverse of this element
virtual const Ring* zero() const = 0;
virtual const Ring* operator-() const = 0;

// sum and product of this element and c
virtual const Ring* operator+(const Ring* c) const = 0;
virtual const Ring* operator*(const Ring* c) const = 0;

// comparison function
virtual bool operator==(const Ring* c) const = 0;

};

2. Implement the generic polynomial class GPoly which provides the same operations
as the class Polynomial of Exercise 2 (and is internally implemented in an analogous
way) except that its operation add has interface

GPoly& add(Ring* coeff, int* exps);

i.e., we can add to the polynomial a monomial whose coefficient has as its type
a (pointer to a) concrete class that is derived from the abstract class Ring. The
internal representation thus has to operate with and store Ring* values (class GPoly
does not know and use the class Rational described below).

3. Derive from Ring a concrete class Rational; every object of this class encapsulates
a rational number represented by the numerator and denominator (a pair of int
values that are relatively prime such that the nominator is greater than zero; use
the Euclidean algorithm to divide common factors). The derived class provides
implementations for all abstract operations of the base class (and possibly some
extra operations).

2



Note that in the definition of the arithmetic and comparison functions the pa-
rameter c must be explicitly converted from type const Ring* to type const
Rational*. Use dynamic_cast<const Rational*>(c) to receive a pointer to the
corresponding Rational object (respectively 0, if the conversion is not possible;
the program may then be aborted with an error message).

4. Derive from GPoly the concrete class RPoly whose components denote rational
numbers. The interface of this class supports (by inheritance) the same operations
as those of GPoly but also provides an additional operation

RPoly& add(int n, int d, int* exps);

which allows to add a monomial with coefficient n/d to the polynomial. It is
primarily this operation by which the user builds polynomials with rational coeffi-
cients (the method internally constructs a Rational object and calls the method
add inherited from GPoly).

Test classes Rational and RPoly in a comprehensive way (several calls of each function)
in a similar way as in Exercise 2 (print the function results and show the output in the
deliverable).

3


