Executing Specifications

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria http://www.risc.jku.at

1. Executing Initial Specifications

2. Constructive Specifications

Term Rewriting

Term rewriting can be used for "executing" initial specifications.

- Reduction system (R, \rightarrow).

■ Set R, relation $\rightarrow \subseteq R \times R$.

- Reduction sequence r_{1}, r_{2}, \ldots
- Finite or infinite sequence of elements $r_{i} \in R$ with $r_{i} \rightarrow r_{i+1}$, for every i.
- Transitive closure: $r_{1} \rightarrow^{*} r_{k}$, for every k.

■ Equivalence sequence r_{1}, r_{2}, \ldots

- Finite or infinite sequence of elements $r_{i} \in R$ with $r_{i} \rightarrow r_{i+1}$ or $r_{i+1} \rightarrow r_{i}$, for every i.
- Transitive closure: $r_{1} \simeq r_{k}$, for every k.

We will now investigate various properties of these notions.

Properties of Reduction Systems

Take reduction system (R, \rightarrow).

- (R, \rightarrow) is Noetherian:
(R, \rightarrow) does not have any infinite reduction sequence.
$\square(R, \rightarrow)$ is locally confluent:
$\forall r, s, t \in R: r \rightarrow s \wedge r \rightarrow t \Rightarrow \exists u \in R: s \rightarrow^{*} u \wedge t \rightarrow^{*} u$.

- (R, \rightarrow) is confluent:
$\forall r, s, t \in R: r \rightarrow^{*} s \wedge r \rightarrow^{*} t \Rightarrow \exists u \in R: s \rightarrow^{*} u \wedge t \rightarrow^{*} u$.
$\square s \in R$ is a normal form of $r \in R$:

$$
r \rightarrow^{*} s \wedge \neg \exists t \in R: s \rightarrow t .
$$

Example

- Take reduction system $\left(\mathbb{N}^{3}, \rightarrow\right)$:

$$
\begin{aligned}
& \left(m_{1}, m_{2}, m_{3}\right) \rightarrow\left(n_{1}, n_{2}, n_{3}\right): \Leftrightarrow \\
& \quad m_{3}>0 \wedge n_{1}=m_{1} \wedge n_{2}=m_{2}+1 \wedge n_{3}=m_{3}-1 \vee \\
& \quad m_{2}>0 \wedge n_{3}=m_{3} \wedge n_{1}=m_{1}+1 \wedge n_{2}=m_{2}-1
\end{aligned}
$$

- Possible reduction sequences:

$$
\begin{aligned}
& (4,1,2) \rightarrow(5,0,2) \rightarrow(5,1,1) \rightarrow(6,0,1) \rightarrow(6,1,0) \rightarrow(7,0,0) \\
& (4,1,2) \rightarrow(4,2,1) \rightarrow(5,1,1) \rightarrow(5,2,0) \rightarrow(6,1,0) \rightarrow(7,0,0)
\end{aligned}
$$

- Reduction system is Noetherian, locally confluent, and confluent.
- Normal forms are ($n, 0,0$) with $n \in \mathbb{N}$.

A reduction system may be viewed as a non-deterministic program (provided that R is decidable and \rightarrow is computable).

Church-Rosser Property

- Lemma: for every confluent reduction system (R, \rightarrow), we have

$$
\forall r, s \in R: r \simeq s \Leftrightarrow \exists t \in R: r \rightarrow^{*} t \wedge s \rightarrow^{*} t
$$

Proof of " \Rightarrow " (" \Leftarrow is trivial):

- Take arbitrary $r \simeq s$ with equivalence sequence $r=r_{1}, r_{2}, \ldots, r_{k}=s$. Proof proceeds by induction on k.
- $k=1$: take $t=r$.
- $k>1$: by induction hypothesis, we have u with $r \rightarrow^{*} u$ and $r_{k-1} \rightarrow^{*} u$. Now either $r_{k-1} \rightarrow s$ or $s \rightarrow r_{k-1}$.
- Case $r_{k-1} \rightarrow s$: by confluence, we have v with $s \rightarrow^{*} v$ and $u \rightarrow^{*} v$, hence $r \rightarrow^{*} v$. Take $t=v$.
- Case $s \rightarrow r_{k-1}$: we have $s \rightarrow^{*} u$. Take $t=u$.

Graphical representation guides intuition in proof.

Central Theorem

- Newman's Lemma: a Noetherian and locally confluent reduction system is confluent.
- It suffices to check local confluence.
- Theorem: take Noetherian and confluent reduction system (R, \rightarrow).
- Each element of R has exactly one normal form.
- Let $r, s \in R$. Then $r \simeq s$ iff r and s have the same normal form.

Central theorem for reduction systems.

Term Rewriting Systems

Take initial specification (Σ, Φ).

- The term rewriting system for (Σ, Φ) is the reduction system (T_{Σ}, \rightarrow) where \rightarrow is inductively defined as follows:
$\square V \sigma \rightarrow W \sigma$
- for each equation $\forall X . v=w \in \Phi$ and ground substitution $\sigma: X \rightarrow T_{\Sigma}$.
- If $t \rightarrow u$, then $s[t / y] \rightarrow s[u / y]$
\square for every term $s \in T_{\Sigma(\{y\})}$ containing at least one occurrence of variable y.
- If $t \rightarrow u$, we call " $t \rightarrow u$ " a rewrite rule.

Initial specifications give rise to reduction systems.

Example

initial spec

sorts nat
opns

$$
\begin{aligned}
& 0: \rightarrow \text { nat } \\
& \text { Succ }: n a t \rightarrow \text { nat } \\
& -+ \text { _ }: n a t \times n a t \rightarrow \text { nat }
\end{aligned}
$$

vars m, n : nat
eqns

$$
\begin{aligned}
& n+0=n \\
& n+\operatorname{Succ}(m)=\operatorname{Succ}(n+m)
\end{aligned}
$$

endspec

- Some rewrite rules:

$$
\begin{aligned}
& (0+\operatorname{Succ}(0))+0 \rightarrow 0+\operatorname{Succ}(0) \\
& \operatorname{Succ}((0+\operatorname{Succ}(0))+0)+\operatorname{Succ}(0) \rightarrow \operatorname{Succ}(0+\operatorname{Succ}(0))+\operatorname{Succ}(0)
\end{aligned}
$$

- The normal forms are exactly the terms $\operatorname{Succ}^{n}(0)$, for every $n \geq 0$.
- If term contains + , a rewrite rule can be applied.
- The resulting term rewriting system is Noetherian and confluent.

Properties of Term Rewriting Systems

Take term rewriting system $\left(T_{\Sigma}, \rightarrow\right)$ for initial specification (Σ, Φ) with signature $\Sigma=(S, \Omega)$.
$\forall s \in S: \forall t, u \in T_{\Sigma, s}: t \rightarrow{ }^{*} u \Rightarrow \Phi \models t=u$.

- If there is a reduction sequence from t to u, then t equals u.
- $\forall s \in S: \forall t, u \in T_{\Sigma, s}: t \simeq u \Rightarrow \Phi \models t=u$.
- If there is an equivalence sequence between t and u, then t equals u.
$\square \forall s \in S: \forall t, u \in T_{\Sigma, s}: \Phi \models t=u \Rightarrow t \simeq u$.
- If t equals u, then there is an equivalence sequence between t and u.

The notion of equality in a specification coincides with the existence of an equivalence sequence in the specification's term rewriting system.

Proofs by Term Rewriting

- Simple proof method for equality proofs:
- To prove $\Phi \models t=u$, it suffices to prove $t \simeq u$.
- To prove $\Phi \models \forall X . v=w$, it suffices to prove $v \sigma \simeq w \sigma$ for all ground substitutions σ.
- Example: prove for initial specification (Σ, Φ) of the natural numbers

$$
\Phi \models n+\operatorname{Succ}(\operatorname{Succ}(0))=\operatorname{Succ}(\operatorname{Succ}(n)+0)
$$

- Take arbitrary ground term $t \in T_{\Sigma}$ and prove

$$
t+\operatorname{Succ}(\operatorname{Succ}(0)) \simeq \operatorname{Succ}(\operatorname{Succ}(t)+0)
$$

- $t+\operatorname{Succ}(\operatorname{Succ}(0))$
$\rightarrow \operatorname{Succ}(t+\operatorname{Succ}(0))$
$\rightarrow \operatorname{Succ}(\operatorname{Succ}(t+0))$
$\rightarrow \operatorname{Succ}(\operatorname{Succ}(t))$
$\leftarrow \operatorname{Succ}(\operatorname{Succ}(t)+0)$
Difficult to find equivalence sequence between terms.

Proofs by Term Rewriting (Contd)

- Assume that term rewriting system is Noetherian and confluent.
- Assume that normal forms are terms $\operatorname{Succ}^{n}(0), n \geq 0$.
- Both needs proof.
- Take arbitrary ground term $t \in T_{\Sigma}$ and prove

$$
t+\operatorname{Succ}(\operatorname{Succ}(0)) \simeq \operatorname{Succ}(\operatorname{Succ}(t)+0)
$$

- Take $k \geq 0$ such that $t \simeq \operatorname{Succ}^{k}(0)$.
- $t+\operatorname{Succ}(\operatorname{Succ}(0))$
$\rightarrow \operatorname{Succ}(t+\operatorname{Succ}(0))$
$\rightarrow \operatorname{Succ}(\operatorname{Succ}(t+0))$
$\rightarrow \operatorname{Succ}(\operatorname{Succ}(t))$
$\rightarrow{ }^{*} \operatorname{Succ}^{k+2}(0)$.
- $\operatorname{Succ}(\operatorname{Succ}(t)+0)$
$\rightarrow \operatorname{Succ}(\operatorname{Succ}(t))$
$\rightarrow{ }^{*} \operatorname{Succ}^{k+2}(0)$.
The existence of unique normal forms simplifies rewriting proofs.

Execution by Term Rewriting

Take initial specification (Σ, Φ) with a Noetherian and confluent term rewriting system.

- Theorem: let C be the Σ-algebra defined as:
- $C(s)=\left\{t \in T_{\Sigma, s} \mid t\right.$ is a normal form $\}$
- for each sort s of Σ.
- $C(\omega)=$ the normal form of term n
- for each constant $\omega=(n: \rightarrow s)$ of Σ.
- $C(\omega)\left(t_{1}, \ldots, t_{k}\right)=$ the normal form of term $n\left(t_{1}, \ldots, t_{k}\right)$
- for each operation $\omega=n: s_{1} \times \ldots \times s_{k} \rightarrow s$ of Σ.

Then we have:

- $C(t)$ is the normal form of t, for each ground term $t \in T_{\Sigma}$.
- C is a characteristic term algebra for (Σ, Φ).
- C is thus isomorphic to $T(\Sigma, \Phi)$.

The calculation of the value of a ground term may be performed by calculating the normal form of the term.

Systems for Executing Specifications

Based on the previous result, systems like CafeOBJ "execute" initial specifications (i.e. compute the values of ground terms).

- Basic strategy: equations are treated as rewrite rules.
- Ground terms are rewritten to their normal forms.
- But term rewriting systems may not be Noetherian or confluent.
- Rewriting may not terminate, normal forms may not be unique.
- Why not check for these properties in advance?
- We may prove that a certain term rewriting system is Noetherian.
- Need to find a Noetherian (well-founded) irreflexive partial order of terms that is decreased by the application of every rewrite rule.
- But also local confluence is undecidable, and so is confluence.
- The Knuth-Bendix completion method tries to construct from a given initial specification $s p$ a specification $s p^{\prime}$ with $\mathcal{M}(s p)=\mathcal{M}\left(s p^{\prime}\right)$ such that, if the term rewriting system for $s p$ is Noetherian, the term rewriting system for $s p^{\prime}$ is Noetherian and confluent.
- Semi-algorithm: termination is not guaranteed.

Are there specifications that are guaranteed to be executable?

1. Executing Initial Specifications

2. Constructive Specifications

Constructive Specifications

Specifications with an "operational" flavor ("abstract programs").

- Constructive specification $s p=\left(\Sigma, \Phi, \Omega_{c}\right)$
- Signature $\Sigma=(S, \Omega)$.
- Set of equations $\Phi \subseteq E L(\Sigma)$.
- Set of constructors $\Omega_{c} \subseteq \Omega$.

Three constraints must be satisfied that can be informally stated as:

1. The left-hand side of every equation is a "pattern", the right-hand side is the "value" of this pattern.
2. Every ground term whose outermost operation is not a constructor "matches" exactly one pattern.
3. Treating the equations as rewrite rules from left to right cannot lead to "infinite recursion" in the evaluation of ground terms.

The conditions ensure that every ground term can be deterministically evaluated to a constructor term in a finite number of steps.

Constructive Specifications (Contd)

The three constraints are formalized as follows:

1. Each equation of Φ has form $n\left(v_{1}, \ldots, v_{k}\right)=t$ with

$$
\begin{aligned}
& \left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}, \\
& v_{i} \in T_{\Sigma_{c}(X), s_{i}} \text {, for all } i, \\
& t \in T_{\Sigma(X), s}, \operatorname{Var}(t) \subseteq \operatorname{Var}\left(n\left(v_{1}, \ldots, v_{k}\right)\right) \text {, } \\
& \text { no variable may occur more than once in } n\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

2. For each ground term $n\left(w_{1}, \ldots, w_{k}\right)$ of T_{Σ} with

$$
\begin{aligned}
& \left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}, \\
& w_{i} \in T_{\Sigma_{c}, s_{i},}, \text { for all } i
\end{aligned}
$$

there exists exactly one equation $n\left(v_{1}, \ldots, v_{k}\right)=t$ in Φ and exactly one ground substitution $\sigma: \operatorname{Var}\left(n\left(v_{1}, \ldots, v_{k}\right)\right) \rightarrow T_{\Sigma_{c}}$ such that

$$
w_{i}=v_{i} \sigma, \text { for all } i .
$$

3. There exists a reduction ordering $<$ such that

$$
t<n\left(v_{1}, \ldots, v_{k}\right) \text {, for each equation } n\left(v_{1}, \ldots, v_{k}\right)=t \text { in } \Phi .
$$

Example

```
constructive spec
    sorts nat
    opns
        constr \(0: \rightarrow\) nat
        constr Succ : nat \(\rightarrow\) nat
        _ + _ : nat \(\times n a t \rightarrow n a t\)
    vars \(m, n\) : nat
    eqns
        \(m+0=m\)
        \(m+\operatorname{Succ}(n)=\operatorname{Succ}(m+n)\)
endspec
```

First constraint is clearly satsfied but it is not evident that this is also the case for the last two constraints.

Semantics of Constructive Specifications

Take constructive specification $s p=\left(\Sigma, \Phi, \Omega_{c}\right)$ with signature $\Sigma=(S, \Omega)$ and define $\Sigma_{c}=\left(S, \Omega_{c}\right)$.

- Specification semantics $\mathcal{M}(s p)=\{A \in \operatorname{Alg}(\Sigma) \mid A \simeq C\}$ where C is the canonical algebra of $s p$ defined as follows:
$\square C(s)=T_{\Sigma_{c}, s}$, for each sort $s \in S$.
- $C(\omega)=n$, for each constructor constant $\omega=(n: \rightarrow s) \in \Omega_{c}$.
- $C(\omega)\left(w_{1}, \ldots, w_{k}\right)=n\left(w_{1}, \ldots, w_{k}\right)$,
for each constructor $\omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega_{c}, k \geq 1$,
and for each constructor term $w_{i} \in T_{\Sigma_{c}, s_{i}}$, for every i.
- $C(\omega)\left(w_{1}, \ldots, w_{k}\right)=C(t \sigma)$,
for each non-constructor (constant)
$\omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}, k \geq 0$,
and for each constructor term $w_{i} \in T_{\Sigma_{c}, s_{i}}$, for every i
where $t \in T_{\Sigma(X)}$ and $\sigma: \operatorname{Var}\left(n\left(v_{1}, \ldots, v_{k}\right)\right) \rightarrow T_{\Sigma_{c}}$ are such that
$n\left(v_{1}, \ldots, v_{k}\right)=t$ is an equation in Φ,
$v_{i} \sigma=w_{i}$, for every i.
It can be proved that C is consistently and uniquely defined.

Example

Take the previous specification of the natural numbers.

- The canonical algebra C of this specification:

$$
\begin{aligned}
& C(\text { nat })=\left\{\operatorname{Succ}^{i}(0) \mid i \in \mathbb{N}\right\}, \\
& C(0)=0, \\
& C(\operatorname{Succ}(w))=\operatorname{Succ}(w), \text { for all } w \in C(\text { nat }), \\
& C(+)(w, 0)=C(w), \text { for all } w \in C(\text { nat }), \\
& C(+)\left(w_{1}, \operatorname{Succ}\left(w_{2}\right)\right)=C\left(\operatorname{Succ}\left(w_{1}+w_{2}\right)\right), \\
& \quad \text { for all } w_{1}, w_{2} \in C(\text { nat }) .
\end{aligned}
$$

- Sample reduction:

$$
\begin{aligned}
& C(+)(0, \operatorname{Succ}(0)) \\
& =C(\operatorname{Succ}(0+0)) \\
& =C(\operatorname{Succ})(C(0+0)) \\
& =\operatorname{Succ}(C(+)(C(0), C(0))) \\
& =\operatorname{Succ}(C(+)(0,0)) \\
& =\operatorname{Succ}(\overline{C(0))} \\
& =\operatorname{Succ}(\overline{0})
\end{aligned}
$$

Properties of Constructive Specifications

Take constructive specification $s p=\left(\Sigma, \Phi, \Omega_{c}\right)$ with $\Sigma=(S, \Omega)$.

- The canonical algebra C of $s p$ is a model of Φ.
- It makes sense to take C as the meaning of the specification.
- The term rewriting system for $s p$ is Noetherian and confluent.
- Ground terms can be mechanically reduced to their normal form.
- Take initial specification $s p_{I}=(\Sigma, \Phi)$. Then $\mathcal{M}(s p)=\mathcal{M}\left(s p_{I}\right)$.
- A constructive specification can be viewed as an initial specification.
- Take loose specification with free constructors $s p_{L}=\left(\Sigma, \Phi, S, \Omega_{c}\right)$. Then $\mathcal{M}(s p)=\mathcal{M}\left(s p_{L}\right)$.
- A constructive specification can be viewed as a loose specification which is freely generated in all sorts.

Constructive specifications can be "executed"; properties and proof techniques of initial and loose specifications remain valid.

Example

```
loose spec
    sorts nat
    opns
    free constr \(0: \rightarrow\) nat
    free constr Succ : nat \(\rightarrow\) nat
    _ + _ : nat \(\times n a t \rightarrow n a t\)
    vars \(m, n\) : nat
    eqns
    \(m+0=m\)
    \(m+\operatorname{Succ}(n)=\operatorname{Succ}(m+n)\)
endspec
```

This loose specification and the corresponding initial and constructive specifications define the same monomorphic abstract datatype.

Constructor Patterns

Take signature $\Sigma=(S, \Omega)$, set of variables X for Σ, set of constructors $\Omega_{c} \subseteq \Omega$, non-constructor $\omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}$ and define signature $\Sigma_{c}=\left(S, \Omega_{c}\right)$.

- A term $n\left(v_{1}, \ldots, v_{k}\right)$ is a constructor pattern for ω if:
$v_{i} \in T_{\Sigma_{c}}(X), s_{i}$, for every i, and
no variable in $n\left(v_{1}, \ldots, v_{k}\right)$ occurs more than once.
- A finite set of patterns P for ω is complete if $P \in \mathcal{P}(\omega)$ where $\mathcal{P}(\omega)$ is inductively defined as follows:
- "Base" rule:

$$
\left\{n\left(x_{1}, \ldots, x_{k}\right)\right\} \in \mathcal{P}(\omega)
$$

where x_{1}, \ldots, x_{k} are pair-wise different variables from X.

- "Variable unfolding" rule: If $P \in \mathcal{P}(\omega)$ and $p \in P$, then any

$$
\left(P \backslash\{p\} \cup\left\{p\left[n_{i}\left(x_{1}, \ldots, x_{k_{i}}\right) / x\right] \mid 1 \leq i \leq I\right\}\right) \in \mathcal{P}(\omega)
$$

where $x \in \operatorname{Var}(p), s$ is the sort of x, l is the number of constructors in Ω_{c} of form $n_{i}: s_{i, 1} \times \ldots \times s_{i, k_{i}} \rightarrow s$ and the variables $x_{1}, \ldots, x_{k_{i}}$ are pairwise different variables from X not in $\operatorname{Var}(p) \backslash\{x\}$.

Example

Take the previously stated specification of natural numbers.

- Complete sets of constructor patterns for _ + _ nat \times nat \rightarrow nat are, for instance:

$$
\begin{aligned}
& \{n+m\}, \\
& \{n+0, n+\operatorname{Succ}(m)\}, \\
& \{0+m, \operatorname{Succ}(n)+m\}, \\
& \{0+0, \operatorname{Succ}(n)+0,0+\operatorname{Succ}(m), \operatorname{Succ}(n)+\operatorname{Succ}(m)\}, \\
& \{n+0, n+\operatorname{Succ}(0), n+\operatorname{Succ}(\operatorname{Succ}(m))\}
\end{aligned}
$$

Every complete set of constructor patterns for an operation "covers all cases" for the application of the operation.

Properties

Take signature $\Sigma=(S, \Omega)$ and set of constructors $\Omega_{c} \subseteq \Omega$ and define signature $\Sigma_{c}=\left(S, \Omega_{c}\right)$.

- Lemma: If P is a complete set of constructor patterns for non-constructor $\omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}$ and $n\left(w_{1}, \ldots, w_{k}\right)$ is a term with constructor terms $w_{i} \in T_{\Sigma_{c}, s_{i}}$, then:

There exists exactly one pattern $p \in P$ and one substitution $\sigma: \operatorname{Var}(p) \rightarrow T_{\Sigma_{c}}$ such that $w_{i}=v_{i} \sigma$, for every i.

- Theorem: If $\Phi \subseteq E L(\Sigma)$ is a finite set of equations that satisfies constraint (1), then the following is equivalent to constraint (2):
- The left-hand sides of the equations $n\left(v 1, \ldots, v_{k}\right)=t \in \Phi$ represent a complete set of constructor patterns for ω,
for each operation $\omega=\left(n: s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}$ and $v_{i} \in T_{\Sigma_{c}(X), s_{i}}$, for all i.

A syntactic criterion to check constraint (2).

Example

Extend the specification of natural numbers as follows:

$$
\begin{aligned}
& -\leq-: \text { nat } \times \text { nat } \rightarrow \text { bool, } \\
& \text { Even : nat } \rightarrow \text { bool. } \\
& 0 \leq n=\text { True, } \\
& \operatorname{Succ}(m) \leq 0=\text { False, } \\
& \operatorname{Succ}(m) \leq \operatorname{Succ}(n)=m \leq n, \\
& \operatorname{Even}(0)=\operatorname{True}, \\
& \operatorname{Even}(\operatorname{Succ}(0))=\text { False, } \\
& \operatorname{Even}(\operatorname{Succ}(\operatorname{Succ}(m)))=\operatorname{Even}(m) .
\end{aligned}
$$

Now it is easy to check that the specification satisfies constraint (2).

Properties

Take signature $\Sigma=(S, \Omega)$ and set of constructors $\Omega_{c} \subseteq \Omega$ and define signature $\Sigma_{c}=\left(S, \Omega_{c}\right)$.

- Theorem: If $\Phi \subseteq E L(\Sigma)$ is a finite set of equations that satisfies constraints (1) and (2), then the conjunction of the following two conditions implies constraint (3):
- The operations $\omega_{j}=\left(n_{j}: s_{1} \times \ldots \times s_{k_{j}} \rightarrow s\right)$ of $\Omega \backslash \Omega_{c}$ can be ordered as a sequence $\omega_{1}, \ldots, \omega_{d}$ such that for each equation $\left(n_{j}\left(v_{1}, \ldots, v_{k_{j}}\right)=t_{j}\right) \in \Phi$ the following holds:

$$
t_{j} \in T_{\Sigma_{j}(X), s} \text { where } \Sigma_{j}=\left(S, \Omega_{c} \cup\left\{\omega_{1}, \ldots, \omega_{j}\right\}\right)
$$

- No mutual recursion among operation definitions.
- For each operation $n:\left(s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}$, each equation $\left(n\left(v_{1}, \ldots, v_{k}\right)=t\right) \in \Phi$, and each subterm $n\left(t_{1}, \ldots, t_{k}\right)$ of t :

Every t_{i} is a subterm of v_{i}, and at least one t_{i} is a proper subterm of v_{i}.

- In every equation, no argument "grows" and one argument "shrinks". Syntactic criterion that is sufficient (not necessary) for constraint (3).

Properties

Take signature $\Sigma=(S, \Omega)$ and set of constructors $\Omega_{c} \subseteq \Omega$ and define signature $\Sigma_{c}=\left(S, \Omega_{c}\right)$.

- Theorem: If $\Phi \subseteq E L(\Sigma)$ is a finite set of equations that satisfies constraints (1) and (2), then the conjunction of the following two conditions implies constraint (3):
- ... (as before)
- For each operation $n:\left(s_{1} \times \ldots \times s_{k} \rightarrow s\right) \in \Omega \backslash \Omega_{c}$, there exists an argument position j such that for each equation $\left(n\left(v_{1}, \ldots, v_{k}\right)=t\right) \in \Phi$, and each subterm $n\left(t_{1}, \ldots, t_{k}\right)$ of t : t_{j} is a proper subterm of v_{j}.
- In all equations, the same argument "shrinks" (others may "grow").

Alternative criterion that is sufficient (not necessary) for constraint (3).

A Generalization

- Constructive specifications may use conditional equations

$$
\begin{aligned}
& \phi_{1} \Rightarrow n\left(v_{1}, \ldots, v_{k}\right)=t_{1} \\
& \ldots \\
& \phi_{I} \Rightarrow n\left(v_{1}, \ldots, v_{k}\right)=t_{l}
\end{aligned}
$$

where the ϕ_{i} are first-order predicate formulas without quantifiers

- that exclude each other mutually: $i \neq j \Rightarrow \neg\left(\phi_{i} \wedge \phi_{j}\right)$,
- but whose disjunction holds: $\phi_{1} \vee \ldots \vee \phi_{I}$.
- Example: abstract datatype "list of elements".

```
[].I = I
    \(\operatorname{Add}(e, I) \cdot m=\operatorname{Add}(e, I . m)\)
Isprefix ([ ], I) = True
Isprefix \((\operatorname{Add}(e, l),[])=\) True
\(e=e^{\prime} \Rightarrow \operatorname{Isprefix}\left(\operatorname{Add}(e, I), \operatorname{Add}\left(e^{\prime}, m\right)\right)=\operatorname{Isprefix}(I, m)\)
\(e \neq e^{\prime} \Rightarrow \operatorname{Isprefix}\left(\operatorname{Add}(e, I), \operatorname{Add}\left(e^{\prime}, m\right)\right)=\) False
```


Summary

- Constructive specifications define monomorphic abstract datatypes.
- Like initial specifications,
- Constructive specifications define abstract datatypes whose carrier sets can be represented as term languages.
- Like loose specifications with free constructors.
- Constructive specifications always possess a model.
- Unlike loose specifications.
- Model cannot collapse into algebra with singletons as carrier sets.
- Unlike initial specifications.
- Constructive specifications can be "executed".
- Various constraints have to be satisfied.
- Comparatively "low-level" (less abstract) flavor.

Initial specifications are frequently written in a constructive fashion.

