Investigations on Improving the
SEE-GRID Optimization Algorithm

Johannes Watzl|
July 2008

UARYSY



® The Software
@® Problem Description

© Accelerate the Computation
The Broyden Update Method
The Delaunay Algorithm
Interpolation using the Regular Mesh Structure

O Parallelization
Schematical View of the Parallel Interpolation Process
Implementation
Problem

© Results
Results of the Sequential Approaches
Results of the Parallel Approach

® Conclusions



The Software

The SEE-KID/SEE-GRID Software

SEE-KID

e Software to help doctors treating eye motility disorders

e Strabism
e Simulation of certain tests
e Simulation of surgery results

e Works on a biomechanical model of the human eye
e Developed at the Upper Austrian Research GmbH. (UAR)

SEE-GRID

e Grid Version of the software

e Developed at the Research Institute for Symbolic
Computation (RISC)




Problem Description

Problem description

Torque Function

e Function to compute the eye postion with eye data as
input

e Function has to be minimized

. 3 3
O ftorque R*—R

Minimization of the Torque Function

e Done by the Levenberg Marquardt Optimization
Algorithm (fast and stable optimizer)

e Time consuming part of the simulations performed by the
SEE-KID/SEE-GRID software




Accelerate the Computation

Strategies to Accelerate the Computation Process

Broyden Update Method Avoids recomputing the Jacobian or
Hessian matrices in every optimization step by
using an update formula

Delaunay Algorithm Triangulates a given mesh of torque
function result values inside the function's
domain. Requested values are interpolated.

Interpolation using the Regular Mesh Structure The Delaunay
algorithm is designed for general meshes and
therefore uses a triangle search algorithm. This
search can be replaced by simple lookups in
regular meshes.



Accelerate the Computation
°

The Broyden Update Method

Strategies to Accelerate the Computation Process

Updating the Jacobian matrix utilizing

k=1 and x*

e The input values of the torque function x
e The torque function result values F(x*~1) and F(x*)

e The Jacobian matrix of the last step J*~! (k denotes the
number of the step)

v

Problem
Decreasing computation time by loss of precision




Accelerate the Computation
°

The Delaunay Algorithm

Strategies to Accelerate the Computation Process

e Create a three dimensional mesh in the torque function's
domain

e Triangulate the mesh (the given set of node points)
e Store a list of triangles

e Search the triangle surrounding a requested point and
interpolate the value with the three triangle vertex points

e Delaunay Algorithm is designed to deal with general
meshes (causes overhead working with a regular mesh).

e A Search Algorithm is necessary.




Accelerate the Computation
°

Interpolation using the Regular Mesh Structure

Strategies to Accelerate the Computation Process

e Decompose the domain into subcubes

e Check if the subcube holding the requested point is
already computed (if no: fill the subcube with the
function values and store it)

e Perform a lookup in the subcube to get the three
surrounding node points of a requested function value

e Interpolate the requested function value

Problem

e Increasing computation time

e Precision problems




Parallelization

Parallelization

Parallel Interpolation

Perform the computation of the three elements of the result
vector in parallel

Parallel Subcube Computation

Perform the filling of the subcube with the torque function
result vectors in parallel

Computation in Advance

Overlapping strategy between the optimization and the grid
point computation

subcubes are computed in advance during the optimization
process




Parallelization
°

Schematical View of the Parallel Interpolation Process

Parallelization

| Optimizer |

Parallel grid point
computing

| Computation in Advance

f(x.y.2) Parallel interpolation

Figure: Schematical view of the parallel interpolation process



Parallelization
°

Implementation

Implementation

Parallel Interpolation

Performed making use of POSIX threads (one thread for each
element of the result vector)

Parallel Subcube Computation

Performed with the help of the OpenMP automatic
parallelizer's parallel for (parallelizing nested loops)
— Problem

Computation in Advance

Performed featuring the OpenMP automatic parallelizer with
parallel sections — Problem




Parallelization
°

Problem

Implementation Problem

Newmat library
Newmat Matrix library used in SEE-KID/SEE-GRID is not
thread safe

Counter Strategies

¢ Replace the Newmat library by a thread safe matrix library

e Use a Model to override the parallel usage of Newmat
(Client Server Model, process forking)

\




Results
°

Results of the Sequential Approaches

Results of the Sequential Approaches

Broyden Update Method

e Higher computation time (optimizer negatively
influenced)

e Incorrect results due to loss of precision

Delaunay Algorithm

e Correct interpolation results in most of the cases

e Higher computation time caused by the triangle search

Interpolation using the Regular Mesh Structure

e Provided exact results in most of the cases

e Higher computation time because of the large number of
torque function evaluations




Results
.

Results of the Parallel Approach

Results of the Parallel Approach

Parallel Interpolation using the Regular Mesh Structure

e Speedup gained with respect to the sequential
interpolation

e No Speedup gained as to the original computation

[ Model 1 [ timeorig (s) [ timeseq (s) | timey (s) [ timeg (s) | timeg (s) [ timeis (s) |
Parameter 1 5.735 83.428 41.251 22.21 12.108 8.11
43.222 24.174 12.129 9.096
44.245 23.131 13.063 9.161
42.276 22.091 12.11 9.202
48.104 23.141 12.114 10.146
Average 43.248 22.827 12.118 9.153
Parameter 2 5.735 139.131 83.478 45.349 23.155 17.234
82.219 44.283 24.204 15.17
82.44 44.16 23.239 16.116
479.231 46.593 23.145 14.227
82.345 44.279 22.224 14.199
Average 82.335 44.637 23.18 15.171

Figure: Timings of the parallel subcube computation



Conclusions

Conclusions

e Both sequential and parallel strategies for acceleration
were investigated.
e The strategies were implemented on the Altix 4700
multiprocessor system.
e OpenMP
e Posix Threads
e Unix processes with shared memory communication
e The results were systematically experimentally evaluated
compared to the original solution
e Precision of results
e Speed of computation




	The Software
	Problem Description
	Accelerate the Computation
	The Broyden Update Method
	The Delaunay Algorithm
	Interpolation using the Regular Mesh Structure

	Parallelization
	Schematical View of the Parallel Interpolation Process
	Implementation
	Problem

	Results
	Results of the Sequential Approaches
	Results of the Parallel Approach

	Conclusions

