
VDM
(Vienna Development Method)

Affiliation:

Andreas Müller – 0555284
Bachelor Presentation – “Technical Mathematics”

Johannes Kepler Universität – Linz, Austria
e-mail: a_m@gmx.at

VDM

• Collection of techniques for
– modeling

– specification

– and design

of computer based systems

• Origins: IBM laboratories in Vienna

• VDM-SL standardized

Content

1. Historical context

2. VDM

3. A proof framework for VDM (mural)

4. VDMTools

History

• 3 phases

– Origin of VDM (1970s)

– Rigorous Proofs (1980s and 90s)

– Formalisation: Tools support

Origin of VDM

• Roots: programming language definition
– definition of PL/I

• Proofs
– 1968: Peter Lucas – equivalence of programming

language concepts

• 1975: dispersal of the group
– Different approaches

Rigorous specification and proof

• 1980s: from definition language to
development ‘method’

• Standardization process gathered momentum

– VDM symposia FME  FM Symposia

• VDM-SL: emphasis on implicit style of
operation specification

Example – „biased queue“

taken from
Dines Björner, Matrin C. Henson -

“Logics of Specification Languages”

Proof Obligations

• Invariants, preconditions, post-conditions

– Arbitrarily complex logical expressions

– In general: model may not be correct

Proof Obligations

• Satisfiability Obligation

Rigorous Proof

Rules of inference

• Proof is not formal

– Couldn‘t be checked by a machine

• Justifications

– Data type properties

– Symbols defined elsewhere

– Rules of inference

Formalization

• Work on tool support

– Prolog-based animation of a VDM model

– SpecBox

• Syntax checking

• Basig semantic checking

– VDM Toolbox

– VDMTools

• Most robust of tools for VDM-SL

Tools support

• Tool development & industrial engagement

– Different capabilities

• Afrodite project

– Object-oriented extensions

– Real-time extensions

VDM++

• 2004: VDMTools sold to CSK (Japan)

– Develop and promote the toolset

Content

1. Historical context

2. VDM

3. A proof framework for VDM (mural)

4. VDMTools

VDM

• Functions

• Operators

• Set notations

• Composite objects

• Invariants

Functions

• Defining explicit functions

– Example

– Conditions

– Usage of “let”

Functions

• Implicit definition

– What is to be computed (not how)

• Maximum function:

• Specification:

Functions

• Pre-condition:

– Assumptions about arguments

– Partial function

• Post-condition:

• Notice that:

Meaning of implicit specification

• Informally, such a specification requires that,
to be correct with respect to the specification,
a function must - when applied to arguments
(of the right type) which satisfy the pre-
condition - yield a result (of the right type)
which satisfies the post-condition.

Implicit functions

• Each implementation may yield another result

• Quantifiers

– Avoid recursion required in direct definition

Advantages

• direct description of (multiple) properties
which are of interest to the user

• characterizing a set of possible results by a
post-condition

• explicit record (by Boolean expression) of the
pre-condition

• less commitment to a specific algorithm

• provision of a name for the result

Operations

• Implicit specification

• Functions: fixed mapping

– Input  Output

– double(2) = 4

• Operations: hidden state to record values

– e.g.: Subsequent sum

– sum(2) = 2, sum(99) = 101, sum(2) = 103,…

Example: Calculator (1)

• Load operation

• Convention: CAPITAL letters

• First line: similar to functions

Example: Calculator (2)

• Load operation

• Second part:

– External access (ext): read (rd) or read/write (wr)

– Name followed by type

• Post-condition:

– Truth valued function (parameter, ext. variables)

Example: Calculator (3)

• Show operation

• Alternative definitions

Example: Calculator (4)

• Preconditions

– Omitted preconditions are assumed to be true

• Divide operation

Set notations

• Set

– Unordered collection of distinct objects

– Values marked by braces e.g. {a,b}

• Forming of sets

– Enumeration of their elements

– Set comprehension

– Intervals

– Empty set {}

Set notations

• The “-set” constructor

– Applied to a known set

– Yields a set of sets

• For finite sets: power set

• Cardinality: card operator

– card {} = 0

Partitions

• Set is partitioned  split into disjoint subsets

• Example

Composite Objects

• make-functions

– Given appropriate values for fields

– Yields value of composite type

• Example: Datec

• Types are disjoint

Decomposing Objects

• Selectors

– Functions to yield component values

– Signature:

– e.g.

• Several other ways of decomposing objects

Decomposing Objects

• Notation for defining local values

• Using selectors

• Using extension of let

• Shorter

Decomposing Objects

• Case construct

– If -then-else-Notation

– “cases”-Notation

Defining composite types

• Definition of a composite type

– Name of composite object

• compose [name] of

– Variable number of fields

• [field-name]: [field-type],

– end

Defining composite types

• If a value is never decomposed by a selector

• ‘is composed of’

• Names for types



Modifying composite objects

• The  function

– Create composite values which differ only in one
field

– e.g.

ADJ diagram (Datec)

Data type invariants

• Truth-valued functions to record restrictions

• Part of the type definition (Keyword: inv)

• Defines the set

• where

Content

1. Historical context

2. VDM

3. A proof framework for VDM (mural)

4. VDMTools

mural

• Developed as part of IPSE 2.5 project

• User-guided proofs

– Convincing arguments for conjectures made on
VDM models

• Users need expertise in structuring a formal
proof

– User completes proofs

• Book-keeping and selection of applicable rules

Constants and Expressions

• Symbols

– Variables

• Collections of values

– Constants

• Value and type constructors ({} = empty set,…)

• Fixed arity (x,y): x…value arguments, y…type arguments

– Binders

• Introduce and bind new variables (quantifiers,…)

Constants and Expressions

• Expression

– Variable symbol

– Constant symbol (correct number of arguments)

– Binder

• Binding a variable in another expression

Rules of inference

• Inference rules

– Above: Hypothesis

– Below: Conlcusion

• Axiom

– “Ax” to the right
of the rule

Proofs

• Arguments from hypotheses to conclusion

• Organized into blocks

– from

– infer

• Inference steps are numbered lines

– Formula

– Justification

Proofs

• Example:

– Conjecture

– Proof

Proofs

• Sub-proofs

Proofs

• Syntactic definition
of constants



Theories

• Theory is a collection of

– Constants

– Binder definitions

– Derived results (+ proofs)

• Theory store

– Collection of theories

• Advantages

– Reuse

– Limits the scope

Example: mural proof (1)

• Inference rule:

• mural

– Status: ‘unproved’

– Selection: proof display opens

Example: mural proof (2)

• Conclusion line flagged ‘unjustified’

• User is free to decide how to approach

– Backwards from the goal

– Forwards from the knowns

• Tools to search theory store for applicable rules

• Expert

– Choose a specific rule

– Tool manages the pattern-matching

Example: mural proof (3)

• User chooses to work backwards

– Definition of as

Example: mural proof (4)

• Rules with sequent hypothesis  sub-proof

Example: mural proof (5)

• Proof is completed by forward reasoning
within the sub-proof

Content

1. Historical context

2. VDM

3. A proof framework for VDM (mural)

4. VDMTools

VDMTools

• Works with VDM++

– Extended version of VDM-SL

– Object-orientated

• Features

– Syntax checking

– Type checking

– Code generation (Java, C++)

VDM++

Resources

• Literature

– Dines Bjørner, Martin C. Henson – “Logic of
Specification Languages”

– Cliff B. Jones – “Systematic Software Development
using VDM”

– Peter Gorm Larsen – “VDM++ Tutorial”

• Software

– VDMTools – www.vdmtools.jp/en/

http://www.vdmtools.jp/en/

