
Formal Methods in Software Development
Exercise 7 (January 6)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

December 5, 2013

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email address,

• the deliverables requested in the description of the exercise,

2. the JML-annotated Java files developed in the exercise.

Email submissions are not accepted.

1



Exercise 7: JML Specifications

Formalize the method specifications given below in the JML heavy-weight format by a precondi-
tion (requires), frame condition (assignable), and postcondition (ensures) and attach the
specification to the method implementations provided in file Exercise7.java. For this pur-
pose, extract the implementation of each method into a separate class Exercise7_I (where I is
the number of the method in the list below) and give this class a main function that allows you
to test the implementation by a call of the corresponding method.

For each method, first use jml to type-check the specification. Then use the runtime assertion
compiler jmlc and the corresponding executor jmlrac to validate the specification respectively
implementation by at least 3 calls of each method; the calls shall include valid and (if possible)
also invalid inputs. Of course, if some call lets an runtime assertion fail, you have to comment
this call out to be able to test any subsequent calls.

If jmlc/jmlrac fails or in order to get a more precise indication of the reason of a runtime
assertion violation, you may also try the alternative tool set jml4c/jml4rcrun; please report
your experience with the respective tools.

Finally use the extended static checker escjava2 to further validate the code; use the option
-NoCautions to suppress any cautions you may get from system libraries.

Please note that various of the given specifications/implementations may contain ambiguities or
even errors. If you detect such, explain them, fix them such that specification and code match
and re-run your checks (concentrate on fixing specifications; change an implementation only, if
it clearly contains a bug, i.e., no reasonable specification of the code is possible).

The deliverables of this exercise consist of

• a nicely formatted copy of the JML-annoated Java code for each class,

• the output of running jml -Q on the class,

• the output(s) of running jmlrac/jml4crun on the class,

• the output of running escjava2 -NoCautions on the class,

both for the original and for the modified implementation of the method (if the implementation
was modified) including an explanation of the detected error and how you fixed it.

Please note that the fact that escjava2 does not give a warning does not prove that the function
indeed satisfies the specification (only that the tool could not find a violation); on the other hand,
if escjava2 reports a warning, this does not necessarily mean that the program indeed violates
its specification (only that the tool could not verify its correctness).

Recommendation: it is better to split pre/post-conditions that form conjunctions into multiple
requires respectively ensure clauses (one for each formula of the conjunction); if an error is
reported, it is then clear, to which formula it refers.

2



1. Specify the method

public static int maximumPosition(int[] a)

that takes an integer array a and returns the position of the biggest element in the array.

2. Specify the method

public static int maximumElement1(int[] a)

that takes an integer array a and returns the biggest element in the array.

3. Specify the method

public static int maximumElement2(int[] a)

that takes an integer array a and returns the biggest element in the array.

4. Specify the method

public static void overwrite(int[] a, int p, int n, int x)

that takes an array a, a position p, a length n, and a value x and writes into a at the n
positions starting with p the element x (n may be also 0).

5. Specify the method

public static int[] insert(int[] a, int p, int n, int x)

that takes an array a, a position p, a length n, and a value x and returns a copy of a with n
copies of value x inserted at position p (n may be also 0 and elements may be also inserted
at the beginning/end of a).

6. Specify the method

public static boolean subtract1(int[] a, int[] b)

that takes two arrays a and b that hold non-negative integer numbers and subtracts from
every element of a the corresponding element of b; if the element would become nega-
tive, it is set to 0. The return value of the function indicates, if all subtractions could be
performed without such a “truncation”.

7. Specify the method

public static boolean subtract2(int[] a, int[] b)
throws TruncatedException

that takes two non-null arrays a and b that hold non-negative integer numbers and subtracts
from every element of a the corresponding element of b, unless the element would become
negative. In that case, this (and all the following) elements remain unchanged and an
exception e is thrown such that e.pos indicates the corresponding position of the array.

3


