Specifying and Verifying Programs (Part 1)
Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

™,
W

Wolfgang Schreiner http://www.risc.jku.at 1/52

Specifying and Verifying Programs %

We will discuss three (closely interrelated) calculi.
Hoare Calculus: {P} ¢ {Q}

If command c is executed in a pre-state with property P and
terminates, it yields a post-state with property Q.

{x=aAy=blx=x+y{x=a+yAy=>b}
Predicate Transformers: wp(c, Q) = P

If the execution of command c shall yield a post-state with
property @, it must be executed in a pre-state with property P.

wp(x :=x+4+y,x=a+yAy=>b)=(x+y=a+yAy=0>)
State Relations: ¢ : [P = Q]

The post-state generated by the execution of command c is related to
the pre-state by P = Q (where only variables x, ... have changed).

x=x-+y:|var x =old x + old yJ¥

Wolfgang Schreiner http://www.risc.jku.at 2/52

1. The Hoare Calculus

2. Predicate Transformers

3. Proving Verification Conditions
4. Termination

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 3/52

M W,
The Hoare Calculus E l(

First and best-known calculus for program reasoning (C.A.R. Hoare).
“Hoare triple”: {P} ¢ {Q}
Logical propositions P and @, program command c.
The Hoare triple is itself a logical proposition.
The Hoare calculus gives rules for constructing true Hoare triples.
Partial correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds unless it aborts or runs forever.”
Program does not produce wrong result.
But program also need not produce any result.
Abortion and non-termination are not (yet) ruled out.
Total correctness interpretation of {P} ¢ {Q}:
“If ¢ is executed in a state in which P holds, then it terminates
in a state in which @ holds.”

Program produces the correct result.

We will use the partial correctness interpretation for the moment.
Wolfgang Schreiner http://www.risc.jku.at 4/52

Weakening and Strengthening N4

P=P {P}c{Q} @=Q
{P} c{Q}

A1 A>
B
Forward: If we have shown A; and A, then we have also shown B.
Backward: To show B, it suffices to show A; and A,.

Logical derivation:

Interpretation of above sentence:

To show that, if P holds, then @ holds after executing c, it suffices to
show this for a P’ weaker than P and a Q' stronger than Q.

Precondition may be weakened, postcondition may be strengthened.

Wolfgang Schreiner http://www.risc.jku.at 5/52

Special Commands 1

{P} skip {P} {true} abort {false}

The skip command does not change the state; if P holds before its
execution, then P thus holds afterwards as well.

The abort command aborts execution and thus trivially satisfies
partial correctness.

Axiom implies { P} abort {Q} for arbitrary P, Q.

Useful commands for reasoning and program transformations.

Wolfgang Schreiner http://www.risc.jku.at 6/52

Scalar Assignments \

{Qle/x]} x:=e{Q}

Syntax

Variable x, expression e.
QR[e/x] ... Q where every free occurrence of x is replaced by e.

Interpretation

To make sure that @ holds for x after the assignment of e to x, it
suffices to make sure that Q holds for e before the assignment.

Partial correctness
Evaluation of e may abort.

{x+3<5} x:=x+4+3 {x<5}
{x<2} x:=x+4+3 {x<b5}

Wolfgang Schreiner http://www.risc.jku.at 7/52

Array Assignments \y

{Qlali — el/al} ali] = e {Q}

An array is modelled as a function a: / — V.

Index set /, value set V.
a[i] = e ...array a contains at index i the value e.

Term a[i — €] (“array a updated by assigning value e to index /")

A new array that contains at index / the value e.
All other elements of the array are the same as in a.

Thus array assignment becomes a special case of scalar assignment.
Think of “a[i] .= €" as “a:= a[i — €]".

{ali = x][1] > 0} a[i]:=x {a[1] > 0}

Arrays are here considered as basic values (no pointer semantics).

Wolfgang Schreiner http://www.risc.jku.at 8/52

Array Assignments W

How to reason about a[i — e]?
Qlali — e]l/]]
(i=J= Qle]) A #j = Qlal])
Array Axioms
i=j=ali—e]ljl=e
i#j=ali— e][j] = alj]

{ali— x][1] >0} a[i]:=x {a[l] > 0}
{i=1=x>0)A(i#1=a1l] >0)} afi]:=x {a[1l] >0}

Get rid of “array update terms” when applied to indices.

Wolfgang Schreiner http://www.risc.jku.at

9/52

Command Sequences v

{P} a {R} {R} 2 {Q}
{P} c1; 00 {Q}

Interpretation

To show that, if P holds before the execution of ¢;; ¢», then @ holds
afterwards, it suffices to show for some R that

if P holds before ¢, that R holds afterwards, and that
if R holds before ¢, then Q holds afterwards.

Problem: find suitable R.
Easy in many cases (see later).

{x+y—-1>0ty=y—1{x+y>0} {x+y >0} x:=x+y {x>0}
{x+y-1>0}y=y—-1Lx:=x+y {x>0}

The calculus itself does not indicate how to find intermediate property.
Wolfgang Schreiner http://www.risc.jku.at 10/52

Conditionals \

{PAb} a {Q} {PA-b} & {Q)
{P} if b then c; else ¢; {Q}

{PAb} c{Q} (PA-Db)=Q
{P} if b then c {Q}

Interpretation
To show that, if P holds before the execution of the conditional, then
Q@ holds afterwards,
it suffices to show that the same is true for each conditional branch,
under the additional assumption that this branch is executed.

{x#0Ax>0} y:=x{y >0} {x#0Ax 20} y:=—x{y>0}
{x#0}if x >0theny:=xelsey :=—x {y >0}

Wolfgang Schreiner http://www.risc.jku.at 11/52

Loops %

{IAb} c{l}
{l} while b do c {I A —b}

{true} loop {false}

Interpretation:
The loop command does not terminate and thus trivially satisfies
partial correctness.
Axiom implies {P} loop {Q} for arbitrary P, Q.
If it is the case that
I holds before the execution of the while-loop and
I also holds after every iteration of the loop body,
then [holds also after the execution of the loop (together with the
negation of the loop condition b).
I is a loop invariant.
Problem:
Rule for while-loop does not have arbitrary pre/post-conditions P, Q.

In practice, we combine this rule with the strengthening/weakening-rule.

Wolfgang Schreiner http://www.risc.jku.at 12/52

Loops (Generalized) \

P=1 {IAbYc{l} (IN-b)=Q
{P} while b do c {Q}

Interpretation:

To show that, if before the execution of a while-loop the property P
holds, after its termination the property @ holds, it suffices to show
for some property / (the loop invariant) that

I holds before the loop is executed (i.e. that P implies /),

if 1 holds when the loop body is entered (i.e. if also b holds), that
after the execution of the loop body / still holds,

when the loop terminates (i.e. if b does not hold), / implies Q.

Problem: find appropriate loop invariant /.
Strongest relationship between all variables modified in loop body.

The calculus itself does not indicate how to find suitable loop invariant.

Wolfgang Schreiner http://www.risc.jku.at 13/52

Example v

I s=Y11jAl<i<n+1

(N>0Ai=1As=0)=I
{INi<n}s:=s+ii=i+1{l}
(INign=s=37,J

{n>0Ai=1As=0}while/<ndo(s:=s+iji:=i+1){s=>7,/}

The invariant captures the “essence” of a loop; only by giving its
invariant, a true understanding of a loop is demonstrated.

Wolfgang Schreiner http://www.risc.jku.at 14/52

1. The Hoare Calculus

2. Predicate Transformers

3. Proving Verification Conditions
4. Termination

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 15/52

_ /s
Backward Reasoning .§ |{.

Implication of rule for command sequences and rule for assignments:

{P} c {Qle/x]}
{P} c;x:=e {Q}

Interpretation
If the last command of a sequence is an assignment, we can remove
the assignment from the proof obligation.
By multiple application, assignment sequences can be removed from
the back to the front.

{P} {P} {P} {P} P=x=4
X 1= x+1; x 1= x+1; x 1= x+1; {x+1=5}

y = 2%x; y 1= 2%x; {x+2x =15} (& x=4)

z 1= x+y {x+y=15} (& 3x=15)

{z =15} (& x=5)

Wolfgang Schreiner http://www.risc.jku.at 16/52

Weakest Preconditions 4

A calculus for “backward reasoning” (E.W. Dijkstra).

Predicate transformer wp

Function “wp" that takes a command ¢ and a postcondition @ and
returns a precondition.
Read wp(c, Q) as “the weakest precondition of ¢ w.r.t. Q".

wp(c, Q) is a precondition for ¢ that ensures @ as a postcondition.
Must satisfy {wp(c, Q)} ¢ {Q}.
wp(c, Q) is the weakest such precondition.
Take any P such that {P} ¢ {Q}.
Then P = wp(c, Q).
Consequence: {P} ¢ {Q} iff (P = wp(c, Q))
We want to prove {P} ¢ {Q}.
We may prove P = wp(c, Q) instead.

Verification is reduced to the calculation of weakest preconditions.

Wolfgang Schreiner http://www.risc.jku.at 17/52

Weakest Preconditions N\

The weakest precondition of each program construct.

wp(skip, Q) = Q
wp(abort, Q) = true
Wp x:=e,Q) = Qle/x]

wp(if b then ¢; else ¢, Q) = (b = wp(c1, Q)) A (—b = wp(cz, Q))
wp(if b then ¢, Q) & (b = wp(c, Q) A (-b= Q)
P

(
(
(
Ecl 2, Q) = wp(c1, wp(c2, Q))
(
wp(while b do ¢, Q) =

Loops represent a special problem (see later).

Wolfgang Schreiner http://www.risc.jku.at

18/52

. ZaY
Forward Reasoning -& {-

Sometimes, we want to derive a postcondition from a given precondition.
{P} x:=e {3x0: P[xo/x] A x = e[x0/x]}

Forward Reasoning
What is the maximum we know about the post-state of an
assignment x := e, if the pre-state satisfies P?
We know that P holds for some value xp (the value of x in the
pre-state) and that x equals e[xp/x].

{x>0Ay=a}
x:=x+1
{3 :x%>0Ay=aAx=x+1}
(& (Fx:x>0Ax=x+1)Ay=2a)
(&x>0Ay=a)

Wolfgang Schreiner http://www.risc.jku.at 19/52

Strongest Postcondition v

A calculus for forward reasoning.

Predicate transformer sp
Function “sp” that takes a precondition P and a command ¢ and
returns a postcondition.
Read sp(c, P) as “the strongest postcondition of ¢ w.r.t. P".

sp(c, P) is a postcondition for ¢ that is ensured by precondition P.

Must satisfy {P} ¢ {sp(c, P)}.

sp(c, P) is the strongest such postcondition.
Take any P, Q such that {P} ¢ {Q}.
Then sp(c, P) = Q.

Consequence: {P} c {Q} iff (sp(c, P) = Q).
We want to prove {P} ¢ {Q}.
We may prove sp(c, P) = Q instead.

Verification is reduced to the calculation of strongest postconditions.

Wolfgang Schreiner http://www.risc.jku.at

20/52

Strongest Postconditions \

The strongest postcondition of each program construct.

sp(skip, P) = P

sp(abort, P) = false

sp(x =€, P) = 3xy : P[xo/x] A x = e[x0/X]

sp(c1; @2, P) = sp(c2, sp(ci, P))

sp(if b then c; else ¢, P) < sp(c1, P A b) V sp(cz, P A —b)
sp(if b then ¢, P) = sp(c P A b)V (P A—b)

sp(while b do ¢, P) =

Forward reasoning as a (less-known) alternative to backward-reasoning.

Wolfgang Schreiner http://www.risc.jku.at 21/52

A

Hoare Calculus and Predicate Transformers .E l(.

In practice, often a combination of the calculi is applied.

{P} c1;while b do ¢; & {Q}

Assume ¢; and ¢ do not contain loop commands.

It suffices to prove
{sp(P, c1)} while b do ¢ {wp(c, Q)}

Predicate transformers are applied to reduce the verification of a program
to the Hoare-style verification of loops.

Wolfgang Schreiner http://www.risc.jku.at 22/52

Weakest Liberal Preconditions for Loops ‘& I{‘

Why not apply predicate transformers to loops?

wp(loop, Q) = true
wp(while b do ¢, Q) = Lo(Q) A Li(Q) A La(Q) A ...

Lo(Q) = true
L,'+1(Q) = (_‘b = Q) A (b = Wp(C, LI(Q)))

Interpretation
Weakest precondition that ensures that loops stops in a state
satisfying @, unless it aborts or runs forever.
Infinite sequence of predicates L;(Q):
Weakest precondition that ensures that after less than / iterations the
state satisfies @, unless the loop aborts or does not yet terminate.
Alternative view: L;(Q) = wp(if;, Q)
ifo = loop
ifir1 = if b then (c;if;)

Wolfgang Schreiner http://www.risc.jku.at 23/52

Example \

wp(while i < ndoi:=i+1,Q)

Lo(Q) = true
LQ)=((<n=Q)A(i<n=wp(i:=i+1,true))
S (ign=Q)A(i < n=true)
s (£ n=Q)
LQ=>(gLn=QA(i<n=>wp(i:=i+1i<n=Q))
s (ign=Q)A
(i<n=((+1¢£n=Q[i+1/1))
LQ)=>(<Ln=QA(i<n=>wp(i:=i+1,
(ign=>QA(i<n=((+1<£n=Q[i+1/])))
s (ign=Q)A
(i<n=((i+1¢£n=Q[i+1/i])A
(i+l<n=(i+2¢n= Q[i+2/i]))))

Wolfgang Schreiner http://www.risc.jku.at 24/52

Weakest Liberal Preconditions for Loops %

Sequence L;(Q) is monotonically increasing in strength:
VieN:Li1(Q) = Li(Q).
The weakest precondition is the “lowest upper bound”:
Vi € N : wp(while b do ¢, Q) = Li(Q).
VP :(VieN:P = Li(Q)) = (P = wp(while b do c, Q)).
We can only compute weaker approximation L;(Q).
wp(while b do ¢, Q) = Li(Q).
We want to prove {P} while b do ¢ {Q}.

This is equivalent to proving P = wp(while b do c, Q).
Thus P = L;(Q) must hold as well.

If we can prove =(P = Li(Q)), ...

{P} while b do ¢ {Q} does not hold.
If we fail, we may try the easier proof =(P = L;11(Q)).

Falsification is possible by use of approximation L;, but verification is not.

Wolfgang Schreiner http://www.risc.jku.at 25/52

1. The Hoare Calculus

2. Predicate Transformers

3. Proving Verification Conditions
4. Termination

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 26/52

A Constructive Definition of Arrays

% constructive array definition
newcontext "arrays2";

% the types
INDEX: TYPE = NAT;
ELEM: TYPE;
ARR: TYPE =
[INDEX, ARRAY INDEX OF ELEM];

% error constants

any: ARRAY INDEX OF ELEM;
anyelem: ELEM;

anyarray: ARR;

% a selector operation

content:
ARR -> (ARRAY INDEX OF ELEM) =
LAMBDA(a:ARR): a.l;

Wolfgang Schreiner

% the array operations
length: ARR -> INDEX =
LAMBDA(a:ARR): a.0;
new: INDEX -> ARR =
LAMBDA(n:INDEX): (n, any);
put: (ARR, INDEX, ELEM) -> ARR =
LAMBDA(a:ARR, i:INDEX, e:ELEM):
IF i < length(a)
THEN (length(a),
content(a) WITH [i]:=e)
ELSE anyarray
ENDIF;
get: (ARR, INDEX) -> ELEM =
LAMBDA(a:ARR, i:INDEX):
IF i < length(a)
THEN content(a) [i]
ELSE anyelem ENDIF;

http://www.risc.jku.at

27/52

Proof of Fundamental Array Properties .E l(.
J
% the classical array axioms as formulas to be proved
lengthl: FORMULA
FORALL (n:INDEX): length(new(n)) = n;
length2: FORMULA
FORALL (a:ARR, i:INDEX, e:ELEM):
i < length(a) => length(put(a, i, e)) = length(a);
getl: FORMULA
FORALL (a:ARR, i:INDEX, e:ELEM):
i < length(a) => get(put(a, i, e), i) = e;
get2: FORMULA [adu]: expand length, get, put, content
FORALL(a:ARR, i, j:INDEX, e:ELEM): [c3b]: scatter
i < length(a) AND j < length(a) AND [qid]: proved (CVCL)
i/=3 =

get(put(a, i, e), j) = get(a, j);

Wolfgang Schreiner http://www.risc.jku.at 28/52

Proof of a Higher-Level Array Property %

% extensionality on low-level arrays
extensionality: AXIOM
FORALL(a, b:ARRAY INDEX OF ELEM):
a=b <=> (FORALL(i:INDEX):alil=b[il);

% unassigned parts hold identical values
unassigned: AXIOM
FORALL(a:ARR, i:INT): [adt]: expand length, get, content
) P ’ cw2]: scatter
(i >= length(a)) => content(a) [i [[qu]: proved (CVCL)
[rey]: assume b_0.1=a_ 0.1
[zpt]: proved (CVCL)
% extensionality on arrays to be prc [1pt]5:1|n_stantt|tate a 0.1,b 0.1in1fm
equality: FORMULA Iy [kl]J.Z?:C:ufor
FORALL(a:ARR, b:ARR): a = b <=> [iub]: proved (CVCL)
length(a) = length(b) AND
(FORALL(i:INDEX): i < length(a) => get(a,i) = get(b,i));

Wolfgang Schreiner http://www.risc.jku.at 29/52

A Program Verification) *
i
Verification of the following Hoare triple:
{olda=aAnoldx=xAn=l]a|Ai=0Ar=-1}
while i <nAr=-1do
if a[i] = x
then r :=1
else i :=i+1
{a = olda A x = oldx A
((r=-1AVi:0<i<|al=ali] #x)V
(0<r<lalnalr]=xAVi:0<i<r= a[i] #x))}
Find the smallest index r of an occurrence of value x in array a (r = —1,

if x does not occur in a).

Wolfgang Schreiner http://www.risc.jku.at 30/52

The Verification Conditions .E l(.

A & Input = Invariant

Bi & Invariant Ai < nAr=—1Aa[i] = x = Invariant[i/r]

B, & Invariant Ai < nAr=—1Aa[i] #x = Invariant[i 4+ 1/i]
C :& Invariant A —(i < n A r = —1) = Output

Input := olda = a A oldx = x A n = length(a) N\i =0Ar=—1

Output = a = olda N\ x = oldx N
((r=—=1AVi:0<i< length(a) = a[i] # x) V
(0 < r < length(a) A a[r] = x AVi:0<i<r= ali] #x))
Invariant :< olda = a A oldx = x A n = length(a) A
0<i<nAVj:0<j<i=aljl]#xA
(r==1Vv(r=ini<nAa[r]=x))

The verification conditions A, By, B,, C have to be proved.

Wolfgang Schreiner http://www.risc.jku.at 31/52

The Verification Conditions '& l(.
Q)
newcontext Input: BOOLEAN = olda = a AND oldx = x AND
"linsearch"; n = length(a) AND i = O AND r = -1;

% declaration
% of arrays

a: ARR;
olda: ARR;
x: ELEM;
oldx: ELEM;
i: NAT;
n: NAT;
r: INT;

Wolfgang Schreiner

Output: BOOLEAN = a = olda AND
((r = -1 AND
(FORALL(j:NAT): j < length(a) =>
get(a,j) /= x)) OR
(0 <= r AND r < length(a) AND get(a,r) = x AND
(FORALL(j :NAT) :
j <r=>get(a,j) /=x)));

Invariant: (ARR, ELEM, NAT, NAT, INT) -> BOOLEAN =
LAMBDA(a: ARR, x: ELEM, i: NAT, n: NAT, r: INT):
olda = a AND oldx = x AND
n = length(a) AND i <= n AND
(FORALL(j:NAT): j < i => get(a,j) /= x) AND
(r =-10R (r =1 AND i < n AND get(a,r) = x));

http://www.risc.jku.at 32/52

The Verification Conditions (Contd) 2

A: FORMULA
Input => Invariant(a, x, i, n, r);

B1: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r
=> Invariant(a,x,i,n,i);

-1 AND get(a,i) = x

B2: FORMULA
Invariant(a, x, i, n, r) AND i < n AND r
=> Invariant(a,x,i+1,n,r);

-1 AND get(a,i) /= x

C: FORMULA
Invariant(a, x, i, n, r) AND NOT(i < n AND r = -1)
=> QOutput;

Wolfgang Schreiner http://www.risc.jku.at 33/52

The Proofs

A: [bca]: expand Input, Invariant B1:

[fuo]: scatter
[bxg]: proved (CVCL)

(2 user actions)

B2: [a1b]: expand Invariantin6kv C:
[sIx]: scatter
[aly]: auto
[cch]: proved (CVCL)
[b1y]: proved (CVCL)
[c1y]: proved (CVCL)
[d1y]: proved (CVCL)
[e1y]: proved (CVCL)

(3 user actions)

Wolfgang Schreiner

[p1b]: expand Invariant
[If6]: proved (CVCL)

(1 user action)

[dcal: expand Invariant, Output in zfg
[tvy]: scatter
[deu]: auto
[t4c]: proved (CVCL)
[ecu]: split pkg
[kel]: proved (CVCL)
[lel]: scatter
[lvn]: auto
[lap]: proved (CVCL)
[feu]: auto
[blt]: proved (CVCL)
[geu]: proved (CVCL)

(6 user actions)

http://www.risc.jku.at

34/52

1. The Hoare Calculus

2. Predicate Transformers

3. Proving Verification Conditions
4. Termination

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 35/52

Termination v

Hoare rules for loop and while are replaced as follows:

I=t>0 {INbAt=N}c{INnt<N}
{false} loop {false} (7T while b do ¢ {7 A —b}

New interpretation of {P} ¢ {Q}.
If execution of ¢ starts in a state where P holds, then execution
terminates in a state where @ holds, unless it aborts.
Non-termination is ruled out, abortion not (yet).
The loop command thus does not satisfy total correctness.
Termination term t (type-checked to denote an integer).
Becomes smaller by every iteration of the loop.
But does not become negative.
Consequently, the loop must eventually terminate.
The initial value of t limits the number of loop iterations.

Any well-founded ordering may be used for the domain of t.

http://www.risc.jku.at 36/52

Wolfgang Schreiner

Example v

I s=Y11jAl<i<n+1

(hn>0ANi=1As=0)=1 I=n—-i+1>0
{INi<nAn—i+1=N}s:=s+ii=i+1{IAn—i+1<N}
(INign=s=37,J

{n>0Ai=1As=0}while/<ndo(s:=s+iji:=i+1){s=>7,/}

In practice, termination is easy to show (compared to partial correctness).

Wolfgang Schreiner http://www.risc.jku.at 37/52

Weakest Preconditions for Loops v

wp(loop, Q) = false
wp(while b do ¢, Q) = Lo(Q) vV L1(Q) V L(Q) Vv ...

Lo(Q) = false
Lis1(Q) = (b = Q) A (b= wp(c, Li(Q)))

New interpretation
Weakest precondition that ensures that the loop terminates in a state
in which @ holds, unless it aborts.
New interpretation of L;j(Q)
Weakest precondition that ensures that the loop terminates after less
than i iterations in a state in which @ holds, unless it aborts.
Preserves property: {P} ¢ {Q} iff (P = wp(c, Q))
Now for total correctness interpretation of Hoare calculus.
Preserves alternative view: L;(Q) < wp(if;, Q)
ifo = loop
ifir1 = if b then (c;if;)

Wolfgang Schreiner http://www.risc.jku.at 38/52

Example \

wp(while i < ndoi:=i+1,Q)

Lo(Q) = false
L(Q)=(gn=Q)A(i<n= wp(i:=i+1,L(Q)))
S ((ign=Q)A(i<n= false)
SidnAQ
LQ)=(iZn=QA(i<n= wp(i:=i+1L(Q)))
S (ign=Q)A
i<n=({+1£nAQ[i+1/i]))
LR)=(ZLn=Q)A(i<n= wp(i:=i+1,L[(Q)))
S@igdn=Q)A
(i<n= ((i+1£n= Qi+ 1/i])A
(i+l<n=(+2£nAQ[i+2/]))))

Wolfgang Schreiner http://www.risc.jku.at 39/52

Weakest Preconditions for Loops 4

Sequence L;(Q) is now monotonically decreasing in strength:
VieN: L,(Q) = Li+1(Q).
The weakest precondition is the “greatest lower bound”:
Vi e N: L;i(Q) = wp(while b do c, Q).
VP :(VieN: Li(Q) = P)= (wp(while b do ¢, Q) = P).
We can only compute a stronger approximation L;(Q).
Li(Q) = wp(while b do c, Q).
We want to prove {P} ¢ {Q}.
It suffices to prove P = wp(while b do c, Q).

It thus also suffices to prove P = L;(Q).
If proof fails, we may try the easier proof P = L;11(Q)

However, verifications are typically not successful with any finite
approximation of the weakest precondition.

Wolfgang Schreiner http://www.risc.jku.at 40/52

1. The Hoare Calculus

2. Predicate Transformers

3. Proving Verification Conditions
4. Termination

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 41/52

Abortion .E l(.

New rules to prevent abortion.

{false} abort {true}
{Qle/x] A D(e)} x == e {Q}
{Qla[i — e]/a] A D(e) ND(i) N0 < i < length(a)} a[i] :==e {Q}

New interpretation of {P} ¢ {Q}.

If execution of ¢ starts in a state, in which property P holds, then it
does not abort and eventually terminates in a state in which Q holds.

Sources of abortion.

Division by zero.
Index out of bounds exception.

D(e) makes sure that every subexpression of e is well defined.

Wolfgang Schreiner http://www.risc.jku.at 42/52

Definedness of Expressions v

D(0) = true.
D(1) = true.
D(x) = true.
D(a[i]) = D(i) A0 < i < length(a).
D(e1 + &) = D(e1) A D(e2).
D(61 * 62) D(el) A D()
D(ei/e2) = D(e1) A D(e2) A ex # 0.
D(true) = true.
D(false) = true.
D(—b) = D(b).
D(b1 A bz) D(bl) A D(bz)
D(b1 Vv bz) D(b1) A\ D(bz)
D(e1 < &) = D(e1) A D(e&).
D(e1 < &) = D(e1) A D(e2)
D(e1 > &) = D(e1) A D(e2)
(61 > 62) D(el) A D(EQ)

Assumes that expressions have already been type-checked.
Wolfgang Schreiner http://www.risc.jku.at 43/52

Abortion .E

Slight modification of existing rules.

P = D(b) {PAb} a {Q} {PA-b} 2 {Q}
{P} if b then ¢ else c; {Q}

P = D(b) {PAb}c{Q} (PA-b)= Q
{P} if b then c {Q}

I=(t>0AD(b) {INbAt=N}c{INt<N}
{I} while b do c {I A —b}

Expressions must be defined in any context.

Wolfgang Schreiner http://www.risc.jku.at

4452

Abortion .ﬁ

Similar modifications of weakest preconditions.

p(abort, Q) = false

p(x :=e,Q) = Q[e/x] A D(e)
wp(if b then ¢ else ¢, Q) =
D(b) A (b= wp(c1, Q) A (=b = wp(cz, Q))
wp(if b then ¢, Q) = D(b) A (b = wp(c, Q))
wp(while b do ¢, Q) = (Lo(Q) V L1(Q) V L

g =

A (ﬂb:> Q)
(@V..)

Lo(Q) = false
Lin1(Q) = D(b) A (=b = Q) A (b= wp(c, Li(Q)))

wp(c, Q@) now makes sure that the execution of ¢ does not abort but
eventually terminates in a state in which @ holds.

Wolfgang Schreiner http://www.risc.jku.at

45/52

1. The Hoare Calculus

2. Predicate Transformers

3. Proving Verification Conditions
4. Termination

5. Abortion

6. Procedures

Wolfgang Schreiner http://www.risc.jku.at 46/52

Procedure Specifications .E 4

global g;
requires Pre;
ensures Post;

o:=p(i){c}

Specification of a procedure p implemented by a command c.
Input parameter i, output parameter o, global variable g.
Command ¢ may read/write /i, o, and g.

Precondition Pre (may refer to i, g).
Postcondition Post (may refer to i, 0, g, g)-

go denotes the value of g before the execution of p.
Proof obligation
{PreNip =iNgo=g} c {Post[in/i]}
Proof of the correctness of the implementation of a procedure with
respect to its specification.

Wolfgang Schreiner http://www.risc.jku.at 47/52

Example .E {’

Procedure specification:
global g
requires g > 0A i >0
ensures gp =g-I+oN0<o<i
o:=p(i) { 0:=g%i; g:=g/i }
Proof obligation:
{g>0Ai>0nib=iAgy=g}
o:=g%i, g:=g/i
{gozg'i0+0/\0SO<i0}

A procedure that divides g by i and returns the remainder.

Wolfgang Schreiner http://www.risc.jku.at 48/52

Procedure Calls v

A call of p provides actual input argument e and output variable x.
x = p(e)

Similar to assignment statement; we thus first give an alternative
(equivalent) version of the assignment rule.

Original:
{D(e) A._Q[e/X]}
{Q)
Alternative:
{D(e) NVX: X/j e = Q[x'/x|}
(@

The new value of x is given name x’ in the precondition.
Wolfgang Schreiner http://www.risc.jku.at 49/52

7™\
Procedure Calls .E l(.

From this, we can derive a rule for the correctness of procedure calls.

{D(e) A Pre[e/i] A
vx', g Post[e/i,X’/o,g/go,(g)’/g] = Q[xX'/x,&'/gl}
x = p(e

{Q}

Pre[e/i] refers to the values of the actual argument e (rather than
to the formal parameter /).

x" and g’ denote the values of the vars x and g after the call.
Post]|. . .] refers to the argument values before and after the call.
Q[x'/x, g’ /g] refers to the argument values after the call.

Modular reasoning: rule only relies on the specification of p, not on its

implementation.
Wolfgang Schreiner http://www.risc.jku.at 50/52

Corresponding Predicate Transformers %

WP(X = p(e)v Q) =
D(e) A Pre[e/i] A
vx', g
Postle/i,x'/o,g/g0,8'/g] = QIx'/x,&' /€]
sp(P,x = p(e)) =
Ix0, 80 :

Plxo/y, &0/g] N
(Prele[xo/x, g0/8]/i,80/g] = Postle[xo/x,80/g]/i,x/0])

Explicit naming of old/new values required.

Wolfgang Schreiner http://www.risc.jku.at 51/52

Example .E {’

Procedure specification:
global g
requires g > 0A i >0
ensures gp =g-I+oN0<o<i
o=p(i){o:=g%i; g:=g/i}
Procedure call:
{g>0ANg=NAb>0}
x=p(b+1)
{g-(b+1)<N<(g+1)-(b+1)}
To be proved:
g>0ANg=NAb>0=
D(b+1)Ag>0Ab+1>0A
vx' g’ :
g=g (b+1)+xX'A0<X' <b+1=
g - (b+1)<N<(g'+1)-(b+1)

Wolfgang Schreiner http://www.risc.jku.at 52/52

	The Hoare Calculus
	Predicate Transformers
	Proving Verification Conditions
	Termination
	Abortion
	Procedures

