
Formal Semantics of Programming
Languages

Exercise 2 (May 17)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

April 29, 2013

The exercise is to be submitted by the deadline stated above as a report with a decent cover page
(title of the course, your name, Matrikelnummer, email address) in one of the following forms:

1. either as a single PDF file uploaded in Moodle (no emails, please), or

2. as a stapled paper report handed out to me (in class or in my mailbox).

1

Exercise 2: Expressions with Side effects

Take the following language of programs P, declarations d, commands C, expressions E, nu-
merals N, and identifiers I:

P ::= D;C
D ::= | var I; D
C ::= I := E | C1;C2 | if E1 = E2 then C | if E1 = E2 then C1 else C2
E ::= I | N | E1 +E2 | exec C result E

The expression “exec C result E” executes C and then returns the result of the evaluation of E.
Correspondingly, the evaluation of an expression may alter the store.

1. Define a denotational semantics for this language. In this semantics, a declaration D
introduces a set of identifiers as an environment; the result is an error declaration, if the
same variable is declared twice.

A command valuation C[[C]](e)(s) describes the result of executing command C in en-
vironment e and store s; the result is an error store, if a variable not declared in e was
accessed (read or written).

2. Define a corresponding big-step operational semantics for this language. Use the same
notions of environment and store that you also used in the denotational semantics. In
particular, it shall be possible to derive a judgement for an erroneous program with a
result configuration that indicates that an error occurred.

3. Formulate for each domain P,D,C,E the statement “the operational semantics of the do-
main is equivalent to its denotational semantics”.

4. Prove the equivalence statement for the expression exec C result E (in this proof you can
assume that the equivalence statement holds for E and C).

2

