Formal Methods in Software Development

Exercise 6 (December 17)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

December 6, 2012

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

a cover page with the course title, your name, Matrikelnummer, and email address,
a (nicely formatted) copy of the .java/.theory file(s) used in the exercise,
the deliverables requested in the description of the exercise,

for each program method, a screenshot of the “Analysis” view of the RISC Program-
Explorer with the specification/implementation of the method and the (expanded)
tree of all (non-optional) tasks generated from the method,

for each program method, a screenshot of the corresponding “Semantics” view and
an informal interpretation of the method semantics;

for each task an explicit statement whether the goal of the task was achieved or
not and, if yes, how (fully automatic proof, immediate completion after starting an
interactive proof, complete or incomplete interactive proof),

for each truly interactive proof, a screenshot of the corresponding “Verify” view with
the proof tree,

optionally any explanations or comments you would like to make;

2. the .java/.theory file(s) used in the exercise,

3. the task directory ((PETASKS*) generated by the RISC ProgramExplorer.

Email submissions are not accepted.

Exercise 6: Merging two Arrays

Use the RISC ProgramExplorer to specify the following program, reason about its behavior, and
verify its correctness with respect to its specification:

class Exerciseb
{
// merges two sorted arrays a and b into a sorted result array c
// ("sorted" means "sorted in ascending order™)
public static int[] merge(int[] a, int [] b)
{

int n
int[]
int i
int j
int k =
while (k < n)
{
boolean aisnext = append(a, b, c, i, j, k);
if (aisnext)
i = 1i+1;
else
J o= J+1
k = k+1;
}

return c;

a.length+b.length;
= new int[n];

I 0

0;
0;
0;

}

// writes into c[k] either a[i] or b[j], whatever is smaller
// returns true iff a[i] was written
public static boolean append(int[] a, int[] b, int[] c, int i, int j, int k)
{
}
}

First, create a separate directory in which you place the file Exercise6.java, cd to this directory,
and start ProgramExplorer& from there. The task directory .PETASKS* is then generated as a
subdirectory of this directory.

Then perform the following tasks:
1. Derive suitable specifications of merge and next and reason about the behavior of merge;

verify its correctness with respect to its specification. Deliver for merge the same results
as requested in Exercise 5.

Please note that in the specification of merge is does not suffice to say that the
result array is sorted, it is also necessary to establish some relationship between

'If you cannot show all required verification conditions for merge, you may nevertheless continue with the second
part of the exercise.

the elements of the input arrays and the elements of the result array. Since the
exact specification (and its verification) is a bit complicated, for the purpose of
this exercise it suffices to state that every element in the result array occurs in
one of the input arrays and vice versa.

2. Provide a suitable implementation of next, reason about its behavior, and verify its cor-
rectness with respect to its specification. Deliver for next the same results as requested in
Exercise 5.

Bonus (20 Points): give an exact specification of merge (no verification is required).

Hint: in addition to specify that the result array is sorted, you must specify, for each
input array, the existence of a mapping of indices from the input array to strictly
increasing indices of the result array (such mappings are just values of type ARRAY
INT OF INT). The two mappings must not overlap and must be exhaustive.

