
Formal Methods in Software Development
Exercise 8 (January 16)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

December 4, 2011

The result is to be submitted by the deadline stated above via the Moodle interface of
the course as a .zip or .tgz file which contains

1. a PDF file with

• a cover page with the course title, your name, Matrikelnummer, and email
address,

• the deliverables requested in the description of the exercise,

2. the JML-annotated Java files developed in the exercise,

Email submissions are not accepted.

1



6a (50 points): A Private JML Class Specification

Take the attached source code of a class BoundedQueue which implements a bounded
queue of integers and extend it by a private specification in the heavy-weight JML format
that is as expressive as possible.

Use jml -Q to check the specification (which must not yield an error). Run escjava2 on
the specification. If the tool gives warnings, check them, and if you are very confident that
everything is fine, insert the minimal set of //@nowarn Post (respectively Invariant or
Post, Invariant) annotations required to switch them off.

However, give an explicit explanatation/interpretation of the warnings and why you felt
justified to switch them off.

The result of this exercise contains the JML-annotated file BoundedQueue.java and the
output of jml -Q and escjava2 on this file (in the last case, once without and once with
the nowarn annotations).

6b (50 points): A Public JML Class Specification

Take the previously JML-annotated file BoundedQueue.java and modify it for an appro-
priate public specification of class BoundedQueue; this public specification is to be writ-
ten into file BoundedQueue.jml and shall be based on the abstract datatype QueueModel
specified in the attached file QueueModel.java. Some hints:

• The basic strategy is the same as shown in class for the model-based public speci-
fication of class IntStack.

• Introduce in BoundedQueue.jml a model field of type QueueModel which receives
its value from a model function toModel().

• Give in BoundedQueue.jml public specifications of the public functions using the
model field and the corresponding operations on QueueModel.

• Annotate BoundedQueue.java by a refines annotation that indicates that the
definition of class BoundedQueue in this file is a refinement of the class declared in
BoundedQueue.jml. Add the keyword also to the private behavior specifications
of all public methods.

• Give a specification-only definition of the abstraction function toModel as

/*@ public pure model QueueModel toModel() {
@ QueueModel q = new QueueModel();
@ int index = head;
@ for (int i=0; i<count; i++)
@ {
@ q = q.enqueue(a[index]);

2



@ index = index+1;
@ if (index == a.length) index = 0;
@ }
@ return q;
@ }
@*/

Annotate this definition with a private behavior specification that relates the con-
structed QueueModel to the current BoundedQueue object.

• Add the private object variables to the data group of the model variable; thus
whenever an assignment on the model variable in the public specification is allowed,
also an assignment to the private variables in the implementation is allowed.

First use jml -Q to type-check BoundedQueue.jml in a directory that contains also
BoundedQueueModel.java but does not contain List.java (otherwise also this file will
be immediately type-checked). As soon as the type-check succeeds, also add the file
BoundedQueue.java from the previous exercise to this directory and extend it as indi-
cated above.

Now use jml -Q again to type-check the files. As soon as everything is fine, try escjava2
which may complain again. Check these warnings; if you are confident that everything
is fine, turn them off by nowarn annotations.

However, give an explicit explanatation/interpretation of the warnings and why you felt
justified to switch them off.

The exercise result contains the files BoundedQueue.jml, BoundedQueue.java, and also
QueueModel.java, and the output of jml -Q and escjava2 (in the last case, once without
and once with the nowarn annotations).

3


