Formal Methods in Software Development

Exercise 5 (December 5)

Wolfgang Schreiner
Wolfgang.Schreiner @risc.jku.at

November 16, 2011

The result is to be submitted by the deadline stated above via the Moodle interface of the course
as a .zip or .tgz file which contains

1. a PDF file with

a cover page with the course title, your name, Matrikelnummer, and email address,
the deliverables requested in the description of the exercise,
a (nicely formatted) copy of the .java/.theory file(s) used in the exercise,

for each program method, a screenshot of the “Analysis” view of the RISC Program-
Explorer with the specification/implementation of the method and the (expanded)
tree of all (non-optional) tasks generated from the method,

for each program method, a screenshot of the corresponding “Semantics” view and
an informal interpretation of the method semantics;

for each task an explicit statement whether the goal of the task was achieved or
not and, if yes, how (fully automatic proof, immediate completion after starting an
interactive proof, complete or incomplete interactive proof),

for each interactive proof, a screenshot of the corresponding “Verify” view with the
proof tree,

optionally any explanations or comments you would like to make;

2. the .java/.theory file(s) used in the exercise,

3. the task directory ((PETASKS*) generated by the RISC ProgramExplorer.

Email submissions are not accepted.



Exercise 5: Sorting an Array

Use the RISC ProgramExplorer to specify the following program, reason about its behavior, and
verify its correctness with respect to its specification:

class Exercise5

{
// sort array a in ascending order
public static void sort(int[] a)

{
int n = a.length;
int i = 0;
while (i < n)
{
int m = min(a, 1i);
int e = a[i];
afil = a[m];
a[m] = e;
i = i+1;
}
}

// find position of minimum of array segment afi...]
public static int min(int[] a, int i)

{

}
}

In more detail, first derive suitable specifications of sort and min and reason about the behavior
of sort; verify its correctness with respect to its specification. Deliver for sort the same results
as requested in Exercise 4'.

Afterward provide a suitable implementation for min, reason about its behavior, and verify its
correctness with respect to its specification. Deliver for min the same results as requested in
Exercise 4.

In the specification of sort, it does not suffice to state that the resulting array @’ is sorted and
has the same length n as a; one also needs to state that a’ has the same elements as the original
array a, i.e., that @’ is a permutation of a. For this, it suffices to state that there exists an array p
of length n that contains all values {0, ...,n — 1} that a’[p[i]] = a[i] for every i € {0,...,n— 1}.

This permutation p can be modeled as a value of type ARRAY INT OF INT which supports
operations [1] (the element at index i) and WITH [i] := e (the array that is identical to the

'If you cannot show all required verification conditions for sort, you may nevertheless continue with the second
part of the exercise.



original one except that value e is stored at index i). Furthermore, (ARRAY(i:Base.int):i)
denotes the array that holds value i at index i.

The corresponding predicate “ag is a permutation of a;” can be thus formulated as

isPermutation: PREDICATE(Base.IntArray, Base.IntArray) =
PRED(a®: Base.IntArray, al: Base.IntArray):
LET n = a@®.length IN
n = al.length AND
(EXISTS(p: ARRAY INT OF INT):
(FORALL(i: INT): 0 <= i AND i < n =
0 <= p[i] AND p[i] < n AND
a0.value[i] = al.value[p[i]]) AND
(FORALL(j: INT): ® <= j AND j < n =>
(EXISTS(i: INT): ® <= i AND i < n AND p[i] = j)));

Use this predicate in the specification and in the loop invariant.

To achieve full credit for this exercise, you only need to expand this predicate in the proof that
the invariant initially holds; you have then just to show that there exists the trivial permutation
for @’ = a. In the proof that the invariant is preserved by every loop iteration, you can leave the
part open where you have to show the existence of a new permutation after the iteration.

Optional Bonus Exercise (20 points): complete the proof by showing the existence of the
permutation after the loop iteration. This amounts to show that

o if there exists a permutation pg between the original array a and the array a at the begin
of the loop iteration,

o and the new array a; is constructed from ag by swapping the two elements at positions m
and i.

o that there also exists a permutation p; between a and aj.

Make a drawing to understand how p; is related to pg; p; can be described with the help of the
construct ARRAY(i:INT):

In the proof that p; is indeed the correct permutation, you need a couple of case distinctions.
You may use decompose/split rather than scatter to keep track of the intuition of the indi-
vidual parts of the proof.



