Formal Specification of Abstract Datatypes
Exercise 2 (May 14)

Wolfgang Schreiner
Wolfgang.Schreiner@risc.uni-linz.ac.at

April 18, 2012

The result for each exercise is to be submitted by the deadline stated above via the
Moodle interface as a .zip or .tgz file which contains

e a PDF file with

— a cover page with the title of the course, your name, Matrikelnummer, and
email-address,

— the content required by the exercise (specification, source, proof),

o (if required) the CafeOBJ (.mod) file(s) of the specifications.

Exercise 2: Loose Specifiction of Integers

Assume you are already given a strictly adequate specification of the classical algebra of
Boolean values by a sort bool with free constructors True :— bool, False :— bool and the
logical operations Not : bool — bool, And : bool x bool — bool, Or : bool x bool — bool.

Based on this specification, first write a strictly adequate loose specification of the clas-
sical algebra of natural numbers by a sort nat with free constructors 0, :— nat and
succ, : nat — nat, constant 1, :— nat, and operations —, : nat — nat (r —p,y = 0
for x < y), 45 : nat x nat — nat, *, : nat X nat — nat, =,: nat X nat — bool,
<pn: nat x nat — bool.

With the help of these sorts and operations, your next task is to write a loose specification
(potentially with constructors) of a sort int with constants 0; :— int, 1; :— int and
operations —; : int — int, +; : int X int — int, —; : int X int — int, *; : int X int — int,
=;: int X int — bool, <;: int X int — bool. This specification shall be strictly adequate
with respect to the classical algebra of integer numbers.

Actually, your task is two write two alternative versions of this specification:



1. The idea of the first version is that every integer can be represented as a “natural
numbers with a sign”. Introduce corresponding constructors p : nat — int and
n : nat — int with informal interpretation p(x) = +z and n(x) = —(x + 1) (why
better not choose the interpretation n(x) = —z7).

2. The idea of the second version is that every integer can be represented as a differ-
ence of two natural numbers. Introduce a corresponding constructor i : nat x nat —
int with informal interpretation i(z,y) = x — y.

Based on either representation, you may write (potentially recursive) definitions of the
required constants and operations.

Compare the versions and highlight their advantages and disadvantages. Which logic
did you use for each specification? Which specification do you prefer?

Implement an executable version of one of the specifications (justify your choice) in
CafeOBJ (i.e. a tight module module! MYINT {...} based on the existing modules
BOOL and NAT). The specification should be as close to the chosen loose specification
as possible.

Test the executable specification with a couple of sample reductions. In particular, check
whether

—i(05) =i 1; +i —i(1y)

reduces to true (deliver the corresponding output).



