
Computer Systems (SS 2012)
Exercise 5: June 4, 2012

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

May 15, 2012

The exercise is to be submitted by the denoted deadline via the submission interface
of the Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which
contains the following files:

• A PDF file ExerciseNumber -MatNr.pdf (where Number is the number of the ex-
ercise and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise,
and the author of the solution (identified by name, Matrikelnummer and email
address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that
indentations are appropriately preserved) and an appropriate font size such
that source code lines do not break.

3. A description of all tests performed (copies of program inputs and program
outputs) explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your
solution has unwanted problems or bugs, please document these explicitly
(you will get more credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 5: Generic Polynomials

Implement a class template<typename Coeff > TPoly whose objects represent univari-
ate polynomials over the coefficient domain Coeff .

Here Coeff is assumed to be (in analogy to the class of Exercise 4) a class with public
functions

// prints coefficient on standard output stream
virtual void print() const;

// pointer to sum, and product
virtual const Coeff* operator+(const Coeff* c) const = 0;
virtual const Coeff* operator*(const Coeff* c) const = 0;

The representation and functionality of class TPoly is analogous to that of class GPoly
of Exercise 4.

Second, implement a class Double that may be substituted for Coeff ; an object of type
Double encapsulates a double precision floating point number as a coefficient (in analogy
to the class of Exercise 4).

Third, use TPoly and Double to derive a class Poly that implements polynomials with
double precision floating point coefficients and has the same functionality as the class of
Exercise 4:

class Poly: public TPoly<Double> { ... };

Test class Poly in the same way as in Exercise 4.

2


