Computer Systems (SS 2012)
Exercise 1: April 2, 2012

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@Qrisc.jku.at

March 8, 2012

The exercise is to be submitted by the denoted deadline via the submission interface
of the Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which
contains the following files:

e A PDF file ExerciselNumber-MatNr.pdf (where Number is the number of the ex-
ercise and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise,
and the author of the solution (identified by name, Matrikelnummer and email

address).

2. For every source file, a listing in a fized width font, e.g. Courier, (such that
indentations are appropriately preserved) and an appropriate font size such
that source code lines do not break.

3. A description of all tests performed (copies of program inputs and program
outputs) explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your
solution has unwanted problems or bugs, please document these explicitly
(you will get more credit for such solutions).

e Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

Exercise 1: Delaunay Triangulation

Write a program that computes and visualizes a Delaunay triangulation as shown below:

|E\ Delaunay2 - + X

Algorithm A Delaunay triangulation DT'(S) of a set of points S in the plane is a
subdivision of the convex hull of S into a set of non-overlapping triangles such that the
set of the triangles’ corner points equals S and the circumcircle of every triangle A, .
with corner points a, b, ¢ does not contain any other point from Sﬂ

We may compute DT'(S) by first computing a triangulation of SU{u, v, w} where u, v, w
are three points such that S C A, and no point of S is on an edge of Ay, 4 (“u, v, w
enclose S”). For every point p € S, we choose the unique triangle that contains s and
splits it into three triangles. By this split, the Delaunay property may be violated; we
thus have to check for violations and restore the property.

This is performed by maintaining a set E that contains all possibly violating edges a, b
together with the triangle ty with third point ¢ from which this edge originated. We
look for the opposite triangle ¢; of this edge which has some third point d. If d is in the
circumcircle of y or ¢q is in the circumcircle of ¢1, the property is violated. It is restored
by removing the edge a,b and adding the edge ¢, d to the triangulation. By this “flip”,
the edges a, d and d, b may violate the Delaunay property and have to be checked as well.

The algorithm depends on two tests

"http://de.wikipedia.org/wiki/Delaunay-Triangulation
http://en.wikipedia.org/wiki/Delaunay_triangulation

http://de.wikipedia.org/wiki/Delaunay-Triangulation
http://en.wikipedia.org/wiki/Delaunay_triangulation

function DELAUNAY(S) > S is a set of points in the plane
choose counter-clockwise points u, v, w that enclose S
T+ {Auvw} > T is always a triangulation of Ay 4w
for p e S do
choose Agp.. € T such that p € Ay,
T+ T\{Dapet U{Dapp, Dbep Deapt > p splits Ay p . in three triangles
E — {{a,b,Ngpp), (b,c; Dpep), (ca,Ncap)} > edges E may violate property
while F # () do
choose (a,b,tg) € E > to has two corners a, b
E + E\{{a,b,t0)}
search for t; € T such that t; # tg and ¢; has two corners a, b

if such ¢; exists then > tg and t; share edge a,b
let ¢ be the third corner of ¢; (different from a, b)
if ¢ € Oy, then > polygon a, d, b, c violates property
to < DNgde > flip edge a, b to edge ¢, d
t3 < Dgp,e
S < S\{to, t1} U {t2, 3} > restore Delaunay property
E + FU{{a,d,t2),(d,b,t3)} > we have new possible violations
end if
end if
end while
end for

return {¢t € T | t has not an edge on Ay}
end function

1. p € Agpe (point p is in the triangle with corners a, b, ¢): this can be determined by
checking whether p is on the same side (left or right) of each of the three edges of
the triangle. For this purpose, compute the coefficients e, f, g of the line equation
ex + fy + g = 0 of the edge and then determine the value ep, + fp, + g. Point p
is in the triangle, if this value has the same sign for all three edges (why?).

2. p € O (point p is in the circumcircle of the triangle ¢ = Ay} .): Provided that
a, b, c are the corners of ¢ in counter-clockwise order (we maintain this convention),
this can be determined by checking whether the following determinant is positive:

Az — Pz Ay — Py (ag2c - p?c) + (a§ - p:?/)
bac — Dz by — Dy <b920 _pg) + (bz - pg,) >0
Cx — Pz Cy — Dy (Cg - p:?c) + (CZ - py)

Program It shall be possible to invoke the program with the name of a file, e.g.

DelaunayMain input.txt

where input.txt contains a sequence of text lines of form

width height
number
z_0 y_0

where

e width and height describe the size of the window in which all points of S can be
visualized (i.e., all points have coordinates from 0, inclusive, to width respectively
height, exclusive);

e number is the number of points;
e z; and y; are the integer coordinates of the points.

It shall be also possible to call the program without a file name. In that case, for width =
800 and height = 600, 50 random points are to be generated. For this purpose, use the
C++ random number generator rand () initialized by a call of srand(n) where n are the
digits of your birth date (e.g. n = 24121989) (you have to use #include <cstdlib>).
Test the program by

1. calling it with the file input.txt given on the web site. The outcome must be as
indicated in above picture;

2. calling it without argument. The outcome must be the visualization of the trian-
gulation of a random set as explained above.

Deliver the source code and the screenshots of the two executions indicated above.

In the following, we explain how the program shall be structured into classes. Write for
each class C' a separate header file C'.h and (unless for the two classes whose implemen-
tation is given inline below) a separate implementation file C'.cpp. Use a separate file
DelaunayMain.cpp for your main program.

Points Implement a class Point with minimal interface

class Point
{
public:
double x;
double y;
static void draw(Point *p);
static void draw(Point* p0O, Point* pl);
static void clear(Point* pO, Point* pl);

};

Objects of this class represent points. The static function draw(p) draws a point p as
a small filled circle; the function draw(pgy,p1) draws a line from py to p; together with
the two endpoints. The function clear(pg,p;1) erases the line (by drawing a line in the
background color) and redraws the endpoints.

Triangles Implement a class Triangle with minimal interface

class Triangle

{

static int side(Point *p0O, Point *pl, Point *p);
public:

Point* pO;

Point* p1;

Point* p2;

static bool inside(Triangle *t, Point *p);

};

Objects of this class represent triangles; the static function inside (¢,p) returns true if
and only if point p is inside triangle ¢. For this purpose, it uses an auxiliary function
side(pg,p1,p) which returns +1,0, —1 (the sign of the test value explained above).

Memory Management Actually, we represent points and triangles as pointers to heap-
allocated objects of type Point and Triangle. In order to keep track of the objects and
deallocate them appropriately, implement a class Heap with minimal interface

class Heap

{
static Point** point; static int sp; static int np;
static Point** triangle; static int st; static int nt;
static void resizePoints();
static void resizeTriangles();

public:
static void init();
static Point* newPoint(double x, double y);
static Triangle* newTriangle(Point* pO, Point* pl, Point* p2);
static void clear();

};

The class maintains two arrays point and triangle of sizes sp and st which hold in
the first np respectively nt positions the pointers to the points and triangles allocated
so far. A call of init() allocates the initial arrays from the heap (use some reasonable
values for sp and st) and sets np and nt to 0. The remainder of the program allocates
a new point p by a call of newPoint(p,,p,) and a new triangle A,;. by a call of
newTriangle(a,b,c). The functions allocate corresponding objects from the heap and
store the returned pointers in their internal arrays. If some array becomes full, a new
arry of twice the old size is allocated, the pointers are copied to the new array, and the
old array is deleted. At the end of the program, a call of clear() deallocates all points,
triangles, and the internal arrays (thus returning to the initial state).

Triangle Sets The set T is to be implemented as a pointer to an object of class

#include <list>
class TriangleSet

list<Triangle*> triangles;
list<Triangle*>::iterator next;

public:
static void add(TriangleSet* set, Trianglex t)
{ set->triangles.push_back(t); }
static void remove(TriangleSet* set, Triangle* t)
{ set->triangles.remove(t); }
static void gotoStart(TriangleSet* set)
{ set->next = set->triangles.begin(); }
static bool hasNext(TriangleSet* set)
{ return set->next != set->triangles.end(); 1}
static Triangle* getNext(TriangleSet* set)
{ Trianglex t = *(set->next); set->next++; return t; }
+;
This class (whose implementation you need not understand for the purpose of this exer-
cise) allows you to initialize S with new TriangleSet () (the empty set). A call add(S,t)
adds triangle ¢ to S, remove(S,t) removes t from S. You can iterate over all elements

of S by first calling gotoStart(S). After that you can repeatedly call hasNext (S) to
determine, if S has another triangle. If yes, a call of getNext (.S) will return that triangle.

Edge Sets The set E is to be implemented as a pointer to an object of class EdgeStack

#include <list>
class EdgeStack

{
list<Point*> point0;
list<Point*> point1l;
list<Triangle*> triangle;
public:
static void add(EdgeStack* set, Point* pO, Point* pl, Triangle *t)
{ set->point0.push_back(p0); set->pointl.push_back(pl); set->triangle.push_back(t); }
static bool isEmpty(EdgeStack* set)
{ return set->point0.empty(); }
static Point* getFirstPoint(EdgeStack* set)
{ Point* p = set->point0.back(); set->point0.pop_back(); return p; }
static Point* getSecondPoint (EdgeStack* set)
{ Point* p = set->pointl.back(); set->pointl.pop_back(); return p; }
static Triangle* getTriangle(EdgeStack* set)
{ Trianglex t = set->triangle.back(); set->triangle.pop_back(); return t; }
+;

This class (whose implementation you need not understand for the purpose of this
exercise) allows you to initialize E with new EdgeStack() (the empty set). A call
add(F,a,b,t) adds (a,b,t) to E. A call isEmpty(E) determines whether F is empty.

If not, subsequent calls of getFirstPoint(F), getSecondPoint(F), getTriangle(F)
return a triple (a,b,t) of E and remove it from E.

Triangulation The main functionality can be implemented by the following class:

class Delaunay

{
static TriangleSet* T;
static EdgeSet* E;
static void insert(Point* point)
static Triangle* search(Point *point)
static void restore()
static Triangle* search(Point *p0O, Point *pl, Triangle *t)
static bool violates(Triangle *t0, Triangle *tl1, Point* p0O, Point*pl)
static Point* thirdPoint(Triangle *t, Point* p0O, Point*pl)
static bool inside(Point* pO, Point* pl, Point* p2, Point* p)
public:
static void triangulate(int width, int height, int number, Point** points)
3

This class provides a function triangulate(w,h,n,p) which displays in a window of
size w x h the Delaunay triangulation of the set of n points stored in array p (with
coordinates from 0 inclusive to w respectively h exclusive). A simple enclosing triangle
(which one?) has a horizontal edge of length 2w with y-coordinate —1 and height 2h + 3.

Rather than to ultimately remove the superfluous edges of the enclosing triangle (as
indicated by the last line of the algorithm), it suffices not to draw any edge that leads
to one of the corner points. Also it is recommended (this simplifies testing) not to draw
only the final triangulation, but to draw every edge as soon as it is constructed and to
erase the edge from the screen, as soon as it is removed (you may ignore screen artifacts
that may arise). If you call Sleep(delay) (see file Main.cpp in Drawing.zip) whenever
you draw /erase an edge, you get a nice animation (similar to the one on the course site).

For the implementation, it may be helpful to use the following auxiliary functions:
e insert(p) inserts a new point from points into the current triangulation.
e restore() checks and restores the Delaunay property after the insertion of a point.
e search(p) delivers that triangle of T that contains p.

e violates(ig,t1,a,b) checks whether the two triangles ¢y and ¢; with common edge
a, b violate the Delaunay property.

e thirdPoint(f,a,b) returns the third point ¢ of triangle ¢ which has the two other
points a and b.
e inside(a,b,c,p) returns true if p is within the circumcircle O; with t = Ay ..

Feel free to choose different auxiliary functions. In any case, make ample use of auxiliary
functions, do not implement the algorithm as a single big function (in particular, every
function should not contain more than one loop).

