
Computer Systems (SS 2011)
Exercise 6: June 20, 2011

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

May 30, 2011

The exercise is to be submitted by the denoted deadline via the submission interface
of the Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which
contains the following files:

• A PDF file ExerciseNumber -MatNr.pdf (where Number is the number of the ex-
ercise and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise,
and the author of the solution (identified by name, Matrikelnummer and email
address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that
indentations are appropriately preserved) and an appropriate font size such
that source code lines do not break.

3. A description of all tests performed (copies of program inputs and program
outputs) explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your
solution has unwanted problems or bugs, please document these explicitly
(you will get more credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 6: Polygons with Container Parameters

Take the template classes Math, Point, and Lines developed in Exercise 4 and implement
the following template classes for polygons:

// an abstract class for polygons with points of type Point<C>
template<typename C> class Polygon
{
public:

virtual ~Polygon() { }

// abstract functions
virtual void add(C x, C y) = 0;
vector< Point<C> > pointVector() = 0;
set< Point<C> > pointSet() = 0;
void draw(unsigned int color1 = 0, unsigned int color 2 = 0) = 0;

// framework functions based on add()
void random(int n, int x, int y, int w, int h, int seed = 0);
bool read(const char* filename);

}

// a concrete class using Seq< Point<C> > for its internal representation
template<typename C, template<typename> class Seq> class SeqPolygon:

public Polygon<C>
{
public:

// add point x,y to polygon
virtual void add(C x, C y);

// get sequence/set of points (a copy of the internal sequence as a vector/set)
vector< Point<C> > pointVector();
set< Point<C> > pointSet();

// draw the polygon
void draw(unsigned int color1 = 0, unsigned int color 2 = 0);

};

Here Seq is assumed to be a class template that provides those operations that are com-
mon to all sequence containers of the C++ standard library (please note that operator[]
is not among these operations). The class shall use objects of type Seq< Point<C> > for
its internal representation and use iterators to process these objects (no duplicate of the
point representation as an array/vector may be created for drawing the polygon).

For the implementation of pointSet() you have to specialize the template instance
less< Point<C> > such that less< Point<C> >(a,b) returns true if point a occurs

2



before point b in the lexicographic ordering of point coordinates1; use the operations of
class Math for performing the comparsons.

Then define template classes that use the C++ standard containers vector and list for
their internal representation:

template<typename C> class VectorPolygon:
public SeqPolygon<C, vector> {...};

template<typename C> class ListPolygon:
public SeqPolygon<C, list> {...}:

Test the classes with the help of the template class PolygonSequence of Exercise 5
creating multiple polygons of types VectorPolygon<double> and ListPolygon<double>,
storing all polygons in a sequence seq, and drawing the sequence by a call of seq.draw().
Also print the point sequence/set of some polygon with duplicate points (explicitly state
the duplicates in the sequence).

1(x0, y0) < (x1, y1) ⇔ x0 < x1 ∨ (x0 = x1 ∧ y0 < y1).

3


