
Computer Systems (SS 2011)
Exercise 5: June 6, 2011

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Wolfgang.Schreiner@risc.jku.at

May 17, 2011

The exercise is to be submitted by the denoted deadline via the submission interface
of the Moodle course as a single file in zip (.zip) or tarred gzip (.tgz) format which
contains the following files:

• A PDF file ExerciseNumber -MatNr.pdf (where Number is the number of the ex-
ercise and MatNr is your “Matrikelnummer”) which consists of the following parts:

1. A decent cover page with the title of the course, the number of the exercise,
and the author of the solution (identified by name, Matrikelnummer and email
address).

2. For every source file, a listing in a fixed width font, e.g. Courier, (such that
indentations are appropriately preserved) and an appropriate font size such
that source code lines do not break.

3. A description of all tests performed (copies of program inputs and program
outputs) explicitly highlighting, if some test produces an unexpected result.

4. Any additional explanation you would like to give. In particular, if your
solution has unwanted problems or bugs, please document these explicitly
(you will get more credit for such solutions).

• Each source file of your solution (no object files or executables).

Please obey the coding style recommendations posted on the course site.

1



Exercise 5: Polygons by Sequence Containers

Take the template classes Math, Point, and Lines developed in Exercise 4 and implement
the following abstract class for a polygon whose coordinates have some type C (which
we assume to support the same operations as in Exercise 4).

template<typename C> class Polygon
{
public:

virtual ~Polygon() { }

// add point x,y to polygon
virtual void add(C x, C y) = 0;

// get number of points
virtual int number() = 0;

// get point number i, 0 <= i < number()
virtual Point<C> point(int i) = 0;

// the framework functions
void random(int n, int x, int y, int w, int h, int seed = 0);
bool read(const char* filename);
void draw(unsigned int color1 = 0, unsigned int color 2 = 0);

};

The class represents a framework for generating a random polynomial, reading a polyno-
mial from a file, and drawing a polynomial (including the intersection points). The class
does not contain a concrete representation of the polygon but calls the abstract func-
tions add(), number(), and point() to implement the non-abstract functions random(),
read(), and draw().

Derive from Polygon a non-abstract template class

template<typename C> class VectorPolygon: public Polygon<C> {...};

that provides concrete definitions for the inherited abstract functions; the class represents
the polygon with the help of the standard library by an object of type vector< Point<C>
>; the implementation shall as far as possible make use of the operations that are already
available on this type.

Likewise, derive from Polygon a non-abstract template class

template<typename C> class DequePolygon: public Polygon<C> {...};

that represents the polygon as an object of type deque< <Point<C> >.

2



Please note that by the use of the standard library classes, it is not necessary to explicitly
allocate heap memory with the operator new; thus there is also no need to re-define the
default copy constructors, copy assignment operators, and destructors of these classes.

Finally write a class

template<typename C> PolygonSequence: public list< Polygon<C>* >
{
public:

void draw(unsigned int color1 = 0, unsigned int color 2 = 0);
}

that represents a sequence of polygons and whose function draw() draws all polygons
in the sequence. The class inherits its representation from list< Polygon<C>* > (i.e.
pointers to polygon objects are stored) and does not contain any additional data.

Test the classes by creating multiple polygons of types VectorPolygon<double> and
DequePolygon<double>, storing all polygons in a sequence seq, and drawing the sequence
by a call of seq.draw().

3


