
Linz, JKU, November 08-19, 2012 1

COMPOSITIONAL APPROACH TO
PROGRAM FORMALIZATION AND

VERIFICATION
(methodological introduction)

Mykola (Nikolaj) S. Nikitchenko

Taras Shevchenko National University of Kyiv

Linz, JKU, November 08-19, 2012 2

Contents
� Introduction

� Methodological aspect of integrative approach

� Basic notions of programming

� Formalization of programming notions

� Integrating programming with computability

theory

� Integrating programming with mathematical logic

� Conclusions

Linz, JKU, November 08-19, 2012 3

Taras Shevchenko National University of Kyiv

Linz, JKU, November 08-19, 2012 4

Southern campus of the university

Linz, JKU, November 08-19, 2012 5

Faculty of Cybernetics

Linz, JKU, November 08-19, 2012 6

View on Maydan Nezalezhnosti

Linz, JKU, November 08-19, 2012 7

View on Kiev-Pechersk Lavra Monastery

Linz, JKU, November 08-19, 2012 8

View on river Dnieper

Linz, JKU, November 08-19, 2012 9

Introduction

� In the current computing curricula
specialization prevails over integration

� This leads to some negative
consequences

� Specialization and integration should
be balanced

� The aim of the lecture is to present an
integrative composition-nominative
approach to programming-related
disciplines

Linz, JKU, November 08-19, 2012 10

Specialization-Integration Cycle
in Theories Development

Integration

SpecializationSpecialization

Specialization

SpecializationSpecialization

Linz, JKU, November 08-19, 2012 11

Integration between Formal Methods

Prof. Wolfgang Schreiner*:

The RISC ProgramExplorer was developed
to provide a close integration between
programs, theories, specifications, and
semantic models.

This is “horizontal” integration.

Next step - “vertical” integration

*Computer-Assisted Program Reasoning Based on a Relational Semantics of
Programs

Linz, JKU, November 08-19, 2012 12

Goals of Integrative Approach
� Scientific: Explication and formalization of

semantic-based methods of software system
development

� Educational: development of a new content
for computer science disciplines “around”
programming

� Practical: Construction of software and
educational systems based on the proposed
integrative approach

Linz, JKU, November 08-19, 2012 13

Integrative approach
(educational aspects)

Aim: construct main parts of programming-
related disciplines in integrity of their
essential aspects using a relatively small
number of
� methodological principles,
� basic notions, and
� formal models.

Integration strongly correlates with
fundamentalization that emphases
importance of fundamental, basic notions
for professional education

Linz, JKU, November 08-19, 2012 14

Programming-related disciplines
They include disciplines of three groups:

1) concerning programming itself,

2) basic for programming like theory of
algorithms (computability theory),
mathematical logic, universal algebra,
theoretical linguistics, and

3) based on or involving programming like
system specification, validation and
verification, formal methods of software
development, requirement analysis, etc.

Linz, JKU, November 08-19, 2012 15

Methodological principles

� Principle of universal connection:
everything is connected with
something else.

� Principle of development from abstract
to concrete (from simple to complex,
from a lower level to a higher one,
from the old to the new).

� Triadic principle of development:
thesis – antithesis – synthesis

� Principle of unity of theory and practice
(variant: union of logical and historical
development).

Linz, JKU, November 08-19, 2012 16

Integration of theory and
practice in notion explication

Practice
Society

Transport

… …

Education

Informatization
(Computing)

Categories

Scientific
notions

Formal notions

Theory

Linz, JKU, November 08-19, 2012 17

Summary of the proposed
approach

� Integration

� By Development

� From Abstract to Concrete

� From Methodological via

Professional to

Mathematical Level

(vertical integrity)

� With Internal Integrity on each Level

(horizontal integrity)

Linz, JKU, November 08-19, 2012 18

Main Subject-Object Relations
(philosophical level)

� Ontological

� Gnosiological (Epistemological)

� Praxeological

� Axiological

� Phenomenological

� …

We advocate importance of teaching
philosophy (in view of knowledge-
based economy)

Linz, JKU, November 08-19, 2012 19

Expected Results
(ontological level)

� Net of Notions
(Ontology)

� on various
levels

� with relations
between them

Transformations
between levels:

- particularization,

- formalization.

Methodological
(Philosophical)

Professional
(Scientific)

Formal
(Mathematical)

Linz, JKU, November 08-19, 2012 20

Basic Disciplines for Theory of
Programming (mathematical view)

Theory of
Programming

Set Theory

Mathematical LogicComputability Theory Universal Algebra

Theories are not
fully adequate
with Theory of
Programming,
adaptation is
required

Linz, JKU, November 08-19, 2012 21

Proposed Dependency Scheme
(Algebraic approach)

Nominative Data
Theory

Enhanced
Universal Algebra

Theory of Programming

Enhanced
Mathematical

Logic

Enhanced
Computability

Theory

Level 1 Level 2 Level 3

Theories are
integrated with
Theory of
Programming, are
built on one basis,
adaptation is not
required

Linz, JKU, November 08-19, 2012 22

Professional level

USER PROBLEM

PROGRAM

PROCESS OF
EXECUTION PROCESS OF

PROGRAMMING

topicality

pragmatics

interface

computability
origination (explicativity)

adequacy

Philosophical level
(praxeological view)

SUBJECT
GOAL

TOOL
TOOL MAKING

TOOL USAGE

Developing
the main
notions of
Programming

Problem orientedness

Linz, JKU, November 08-19, 2012 23

Main Methodological Principles
(professional level)
� Principle of integrity of intensional and

extensional aspects (particularization of
categories universal-particular-singular);
leading role of intensional aspects

� Descriptivity principle: objects are presented
by their descriptions; semantic and syntactic
aspects are particularization of categories
content-form; leading role of semantics over
syntax

� Compositionality principle

� Nominativity principle

Linz, JKU, November 08-19, 2012 24

Pentad of the main basic
program notions

PROBLEM

PROGRAM
DATA

FUNCTION

COMPOSITION

NAME

DESCRIPTION

applicativity

naming

grammar

semantic
aspect

syntactic
aspect

interpretation

denoting aspect

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

Linz, JKU, November 08-19, 2012 25

Main thesis (professional level)

The main notion of computer
science (informatics) is the
notion of language (primarily in
constructive, formal,
communicative, and practical
aspects)

Linz, JKU, November 08-19, 2012 26

Development of the notion of data

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

FUNCTION

W.A –“black box” W.C –“white box”

W.S –“white or black
box”

P.C – sets
P.A – presets

P.S – flat
nominative data

H.C. –
hierarchic
sets

H.A –
hierarchic presets

H.S – hierarchic
nominative data

Level P (Parts)

Level H (Hierarchy)

DATA
Level W (Whole)

Triads of categories:
whole (W) – parts (P) – synthesis (H as Hierarchy)
abstract (A) – concrete (C) – synthesis (S).

Linz, JKU, November 08-19, 2012 27

� Nominative data are based on the
naming relation name→→→→value

� Values can be
simple (unstructured) or
complex (structured)

� Names can be simple or complex

� Names and values can be
independent (direct naming) or
dependent (indirect naming is allowed)

Nominative data

Linz, JKU, November 08-19, 2012 28

Representation principles

Data representation principle:

program data can be represented as
concretizations of nominative data.

Semantics representation principle:

program semantics can be represented
by functions over nominative data
(nominative functions) constructed
with the help of compositions

Linz, JKU, November 08-19, 2012 29

Formal language model
(mathematical level)

The first formal language model –

Composition-Nominative Model:

� Semantic (Composition) System

� Syntactical System

� Denotational System

Composition System:

Data – Function – Composition

Intensions should be taken into account

Linz, JKU, November 08-19, 2012 30

Semiotic Aspects of Programs

� pragmatic

� semantics

� Syntax

Semiotic aspects are too abstract,
pragmatics is overloaded with various
senses.

Richer theory of aspects is required

Linz, JKU, November 08-19, 2012 31

Essential Program Aspects

� External program aspects: adequacy,
pragmatics, computability, and
origination;

� Internal aspects: semantics, syntax, and
denoting relation

� Relations between external and internal
aspects (process of programming and
composition, process execution and
function application, etc.)

Linz, JKU, November 08-19, 2012 32

Integrating programming with
computability theory

� Traditional computability is understood
as computability of n-ary functions
defined on integers or strings (Turing
computability, fixed intension).

� The notion of computability over
classes of data with different
intensions is required.

Linz, JKU, November 08-19, 2012 33

Natural computability

Linz, JKU, November 08-19, 2012 34

Complete classes

Theorem 1. Comp(IA, D)={⊥, id}.

Theorem 2. Comp(IC, D)=D→D.

Theorem 3. Comp(IAC, A ∪ C)={f ∪ g | f∈({
⊥A, idA}∪{ A | c ∈C }), g∈ C → C }.

Theorem 4. Comp(IND, ND(V,W))=
=CLOS({⇒v0,..., ⇒vm, v0⇒,..., vm⇒, v0!,...,
vm!}, {°, ∗, ∇}).

Theorems describes executable
components of program specification

Linz, JKU, November 08-19, 2012 35

Integrating programming with
mathematical logic

The main notions of logic:

(IMW, ECW, L, Int, |=, |–)
� IMW is an intensional model (of worlds),

� ECW is a class of extensional models,

� L is a language of a logic,

� |= is a validity relation, and

� |– is an inference relation.

Linz, JKU, November 08-19, 2012 36

Main notions of Logic

Intensional Model

M1

M2

… … … …

…

Language–
formulas

(Syntactic
aspect)

Interpretations I

Validity |=

Inference |–

Models of Worlds
(semantic aspect)

Validity and
Completeness

Linz, JKU, November 08-19, 2012 37

Classes of logics

With respect to the intensions of data we can specify the
following predicate logics:
� propositional logics (abstract data),
� singular logics (concrete data),
� renominative, and
� quantified logics (nominative data).

For all these logics composition-nominative languages of
predicates are defined and investigated.

Next level –program logics.

Linz, JKU, November 08-19, 2012 38

Conclusions
Programming-related disciplines:

� Theory of Programming

� Theory of Algorithms

� Mathematical Logic

� Universal Algebra

� Specification and Programming Languages

� Formal Methods of Software Development

� Databases

can be taught on one (methodological,
professional and formal) basis.

Constructed models are formal thus permitting
their thorough investigation with further
implementation of e-learning tools.

Linz, JKU, November 08-19, 2012 39

References
Formal definitions are presented in:Formal definitions are presented in:Formal definitions are presented in:Formal definitions are presented in:

� Nikitchenko N.S. A Composition-Nominative Approach
to Program Semantics.– IT-TR: 1998-020.– Technical
University of Denmark.– 1998.– 103 p.

� Nikitchenko M., Shkylniak S.: Mathematical logic and
theory of algorithms: Handbook. Publishing house of
National Taras Shevchenko University of Kyiv, 528 p.
(2008) (in Ukrainian).

� Red’ko V., Brona J., Buy D., Poliakov S. Relational
Databases. – K. Akademperiodika, 2001.– 198 с. (In
Russian)

� Basarab I., Nikitchenko N., Red’ko V. Composition
Databases. –K.: Lybed’, 1992. – 191 p. (In Russian)

Linz, JKU, November 08-19, 2012 40

Thank you!

Questions?

