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Decision Problems

Decision problem P.
A set of words P ⊆ Σ∗.

w ∈ P . . .w has property P.
Interpretation as a property of words over Σ.

P(w) . . .w has property P.
Formal definition by a formula:

P := {w ∈Σ∗ | . . .}
P(w) :⇔ . . .

Informal definition by a decision question:
Does word w have property . . . ?

Example problem: Is the length of w a square number?
P := {w ∈Σ∗ | ∃n ∈ N : |w |= n2}
P(w) :⇔∃n ∈ N : |w |= n2

P = {ε,0,0000,000000000, . . .}

A decision problem is the set of all words for which the answer to a
decision question is “yes”.
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Semi-Decidability and Decidability

Problems can be the languages of Turing machines.
A problem P is semi-decidable, if P is recursively enumerable.

There exists a Turing machine M that semi-decides P.
M must only terminate, if the answer to “P(w)?” is “yes”.

A problem P is decidable if P is recursive.
There exists a Turing machine M that decides P.
M must also terminate, if the answer to “P(w)?” is “no”.

yesyes

no

w w
P(w)?M MP(w)?
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Decidability of Complement

Theorem: If P is decidable, also its complement P is decidable.
The answer to “P(w)?” is “yes”, if and only if the answer to
“P(w)?” is “no” (P(w)⇔¬P(w)).

Proof: If P is decidable, it is recursive, thus P is recursive, thus P is
decidable.

Theorem: P is decidable, if both P and P are semi-decidable.
If P and P are semi-decidable, they are recursive enumerable. Thus P
is recursive and therefore decidable.

Direct consequences of the previously established results about recursively
enumerable and recursive languages.
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Decidability and Computability

Theorem: P ⊆ Σ∗ is semi-decidable, if and only if the partial
characteristic function 1′P : Σ∗→p {1} is Turing computable:

1′P(w) :=

{
1 if P(w)

undefined if ¬P(w)

Proof: if P is semi-decidable, there exists M such that, for every word
w ∈ P = domain(1′P), M accepts w . We can then construct M ′ which calls
M on w . If M accepts w , M ′ writes 1 on output tape. If 1′P is Turing
computable, there exists M such that, for every word w ∈ P = domain(1′P),
M accepts w and writes 1 on the tape. We can then construct M ′ which
takes w from the tape and calls M on w . If M writes 1, M ′ accepts w .

Theorem: P ⊆ Σ∗ is decidable, if and only if the characteristic
function 1P : Σ∗→{0,1} is Turing computable:

1P(w) :=

{
1 if P(w)

0 if ¬P(w)

Proof: analogous.
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Turing Machine Codes

Theorem: for every Turing machine M, there exists a bit string 〈M〉,
the Turing machine code of M

such that
1. different Turing machines have different codes

if M 6= M ′, then 〈M〉 6= 〈M ′〉;
2. we can recognize valid Turing-machine codes

w ∈ range(〈.〉) is decidable
3. the encoding 〈M〉 and the decoding 〈c〉−1 are Turing computable.

Core idea: assign to all machine states, alphabet symbols, and tape
directions unique natural numbers and encode every transition
δ (qi ,aj) = (qk ,al ,dr ) by the tuple (i , j ,k, l , r) in binary form.

A Turing machine code is also called a “Gödel number”.
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The Halting Problem

The most famous undecidable problem in computer science.

The halting problem HP is to decide, for given Turing machine
code 〈M〉 and word w , whether M halts on input w :

HP := {(〈M〉,w) | Turing machine M halts on input word w}

(w1,w2): a bit string that reversibly encodes the pair w1,w2.
Theorem: The halting problem is undecidable.

There is no Turing machine that always halts and says “yes”, if its
input is of form (〈M〉,w) such that M halts on input w , respectively
says “no”, if this is not the case.

The remainder of this section is dedicated to the proof of this theorem.
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Enumeration of Words and Turing Machines

Theorem: There exists an enumeration w of all words over Σ.
w = (w0,w1, . . .)

For every word w ′ ∈ Σ∗, there exists i ∈ N such that w ′ = wi .
The enumeration w starts with the empty word, then lists the all words
of length 1, then lists all the words of length 2, and so on. Thus every
word eventually appears in w .

Theorem: There exists an enumeration M of all Turing machines.
M = (M0,M1, . . .)

For every Turing machine M ′ there exists i ∈ N such that M ′ = Mi .
Let C = (C0,C1, . . .) be the enumeration of all Turing machine codes in
bit-alphabetic word order. We define Mi as the unique Turing machine
denoted by Ci . Since every Turing machine has a code and C
enumerates all codes, M is the enumeration of all Turing machines.

There are countably many words and countably many Turing machines.
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Undecidability of the Halting Problem

Proof: define h : N×N→{0,1} as

h(i , j) :=

{
1 if Turing machine Mi halts on input word wj

0 otherwise

If the halting problem were decidable, then h were computable.

Let M be a Turing machine that decides the halting problem.
We construct a Turing machine Mh which computes h.
Mh takes input (i , j) and computes 〈Mi〉 and wj .

Mh enumerates codes 〈M0〉, . . . ,〈Mi 〉 and words w0, . . . ,wj .
Mh passes (〈Mi〉,wj) to M which eventually halts.
If M accepts its input, Mh returns 1, else it returns 0.

It thus suffices to show that h is not computable by a Turing machine.
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Undecidability of the Halting Problem

We assume that h is computable and derive a contradiction.

Define d : N→{0,1} as

d(i) := h(i , i)

d(i) = 1: Mi terminates on input word wi .
Diagonalization: d(0),d(1),d(2), . . . is diagonal of value table for h.

h j = 0 j = 1 j = 2 . . .
i = 0 h(0,0) h(0,1) h(0,2) . . .
i = 1 h(1,0) h(1,1) h(1,2) . . .
i = 2 h(2,0) h(2,1) h(2,2) . . .
...

...
...

...
. . .

Since h is computable, also d is computable.
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Undecidability of the Halting Problem

function M(w):
let i ∈ N such that w = wi
case d(i) of

0: return yes
1: loop end loop

end case
end function

yes

1

0
w i

d

M

Construct M which takes w and determines i ∈ N with w = wi .
M(w) halts, if and only if d(i) = 0.

Let i be such that M = Mi and compute M(wi ).
M(wi ) halts, if and only if d(i) = 0.
M(wi ) halts, if and only if Mi (wi ) does not halt.
M(wi ) halts, if and only if M(wi ) does not halt.

By letting M reason about its own behavior, we derive a contradiction.
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Reduction Proofs

We can construct a partial order on decision problems.
Decision problem P ⊆ Σ∗ is reducible to P ′ ⊆ Γ∗ (P ≤ P ′), if there is
a computable function f : Σ∗→ Γ∗ such that

P(w)⇔ P ′(f (w))

w has property P if and only if f (w) has property P ′.
Theorem: For all decision problems P and P ′ with P ≤ P ′, it holds
that, if P is not decidable, then also P ′ is not decidable.

Proof: we assume that P ′ is decidable and show that P is decidable.
Since P ′ is decidable, there is a Turing machine M ′ that decides P ′.
We construct M that decides P:

function M(w):
w ′← f (w)
return M ′(w ′)

end function

yes

nono

yes

 

M ′

M

P ′(f (w))? P(w)?
f (w)w
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Undecidability of the Restricted Halting Problem

To show that some problem P is not decidable, if suffices to show that, if
P is decidable, also the the halting problem HP is decidable.

Theorem: the restricted halting problem RHP is not decidable.

RHP := {〈M〉 | Turing machine M halts on input word ε}

Decide, for given 〈M〉, whether M halts for input word ε.

Pattern for many undecidability proofs.
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Undecidability of the Restricted Halting Problem

We assume that RHP is decidable and show that HP is decidable.
Since RHP is decidable, there exists MR such that MR accepts
input c , if and only if c is the code of some M which halts on input ε .
We can then define MH , which accepts input (c,w), if and only if c is
the code of some M that terminates on input w :

MH constructs from (c,w) the code of some M ′ which first prints w
on its tape and then behaves like M.

M ′ terminates for input ε (which is ignored and overwritten by w) if
and only if M terminates on input w .

MH accepts its input, if and only if MR accepts 〈M ′〉.

function MH(〈M〉,w):
〈M ′〉 := compute(〈M〉,w)
return MR (〈M ′〉)

end function

yes

no
 

no

yes

MR

MH

M ′ halts on ε? M halts on w?
〈M〉,w 〈M ′〉
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Undecidability of the Acceptance Problem

Theorem: the acceptance problem AP is not decidable.
AP := {(〈M〉,w) | w ∈ L(M)}

Decide, for given M and w , whether M accepts w .
Proof: we assume AP is decidable and show HP is decidable.

Since AP is decidable, there exists MA such that MA accepts (c,w), if
and only if c is the code of some M which accepts w .
We define MH , which accepts input (c,w), if and only if c is the code
of some M that halts on input w .

If c is not well-formed, then MH does not accept its input.
Otherwise, MH modifies 〈M〉 to 〈M ′〉 where M ′ behaves as M, except
that, if M halts and does not accept, M ′ halts and accepts.

M ′ thus accepts input w , if and only if M halts on input w .
MH accepts its input, if MA accepts (〈M ′〉,w).

function MH(〈M〉,w):
〈M ′〉 := compute(〈M〉)
return MA(〈M ′〉,w)

end function

yes

no
 

no

yes

MA

MH

w ∈ L(M ′)? M halts on w?
〈M〉,w 〈M ′〉,w
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Semi-Decidability of the Acceptance Problem

An undecidable problem may be semi-decidable.
Theorem: the acceptance problem AP is semi-decidable.

There is some Turing Machine that halts and says “yes”, if its input is
of form (〈M〉,w) with w ∈ L(M) (and does not halt or says “no”, else).

Proof: we construct a “universal Turing machine” Mu with language
AP which acts as an “interpreter” for Turing machine codes: given
input (〈M〉,w), Mu simulates the execution of M for input w :

If the real execution of M halts for input w with/without acceptance,
then also the simulated execution halts with/without acceptance; thus
Mu accepts its input (c,w), if in the simulation M has accepted w .
If the real execution of M does not halt for input w , then also the
simulated execution does not halt; thus Mu does not accept its input.

Turing machines can be “interpreted/simulated” by other Turing machines.
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Halting versus Acceptance

We know that the halting problem is reducible to the acceptance problem.
Theorem: the acceptance problem is reducible to the halting prob.

HP ≤ AP and AP ≤ HP.
Proof: assume that there exists MH which decides the halting
problem. Then we can construct MA which decides acceptance:

For input (c,w), MA decides whether bit string c is a valid code of
some M, i.e., c = 〈M〉. If not, then MA does not accept its input.
Otherwise, MA forwards (〈M〉,w) to MH :

If MH does not accept (〈M〉,w), then M does not halt on input w ;
thus MA halts without accepting (〈M〉,w).
If MH does accept (〈M〉,w), then M halts on input w ; in this case, MA
invokes Mu on (〈M〉,w) whose simulation of M on input w also halts
with or without accepting w . Then MA halts with the same result.

The halting problem and the acceptance problem are “equivalent”.
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Semi-Decidability of Other Problems

Theorem: the halting problem HP is semi-decidable.
Proof: we construct Turing machine M ′ which takes (〈M〉,w) and
simulates the execution of M on input w . If (the simulation of) M
halts, M ′ accepts its input. If (the simulation of) M does not halt, M ′
does not halt (and thus not accept its input).

Theorem: the non-acceptance problem NAP and the non-halting
problem NHP are not semi-decidable.

Proof: if both a problem and its complement were semi-decidable, they
would be complementary recursively enumerable languages; thus they
would be recursive and the problem and its complement decidable.

Problem semi-decidable decidable
Halting yes no
Non-Halting no no
Acceptance yes no
Non-Acceptance no no

There exist problems that are not even semi-decidable.
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Properties of Recursively Enumerable Languages

Property S of recursively enumerable languages:
A set of recursively enumerable languages.

S is non-trivial:
there is at least one r.e. language in S, and
there is at least one r.e. language not in S.
Some r.e. languages have the property and some do not.

S is decidable: PS is decidable.

PS := {〈M〉 | L(M) ∈ S}

Given 〈M〉, it is decidable whether the language of M has property S.

Decision questions about the semantics of Turing machines.
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Rice’s Theorem

Rice’s Theorem: every non-trivial property of recursively enumerable
languages is undecidable.

There is no Turing machine which for every possible Turing machine M
can decide whether the language of M has a non-trivial property.

All non-trivial questions about the behavior (semantics) of Turing
machines are undecidable.

Also for Turing computable functions.
Also for other Turing complete computational models.

Nevertheless, for some machines a decision may be possible.
For some machines, it is possible to decide termination.

However, no method can perform such a decision for all machines.
No method can exist to decide termination for every possible machine.

Not applicable to questions about form (syntax) of Turing machines.
Does Turing machine M have more than n states?

Not applicable to trivial questions.
Is the language of Turing machine M recursively enumerable?

Fundamental limit to automated reasoning about Turing complete models.
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Proof of Rice’s Theorem

We assume that non-trivial property S of recursively enumerable
languages is decidable and derive a contradiction.

We may assume that /0 6∈ S.
Otherwise continue with S.

If S is not decidable, S is not decidable.
Since S is decidable, there exists MS which decides S.

Assume we can compute, for every (〈M〉,w), code 〈M ′〉 such that
L(M ′) ∈ S ⇔ w ∈ L(M)

M ′ has property S if and only if M accepts w .
Then we can construct MA which decides the acceptance problem:

function MA(〈M〉,w):
〈M ′〉 := compute(〈M〉)
return MS(〈M ′〉)

end function

yes

nono

yes

  

MS

MA

L(M ′) ∈ S? w ∈ L(M)?
〈M ′〉(〈M〉,w)

It remains to be shown how to compute appropriate 〈M ′〉.
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Proof of Rice’s Theorem (Contd)

We construct 〈M ′〉 with L(M ′) ∈ S ⇔ w ∈ L(M).
MA enumerates all possible Turing machine codes and applies MS to
decide whether this code has property S.

Since S is not-trivial and thus not empty, eventually code 〈ML〉 ∈ S
with L(ML) ∈ S is found.

Then MA constructs the code 〈M ′〉 of the following M ′:

function M ′(x):
if w ∈ L(M) then

if x ∈ L(ML) then
return yes

else
loop end loop

end if
else

loop end loop
end if

end function

yes

yes yes

 

M

x

w

ML

M ′

w ∈ L(M) ∧
x ∈ L(ML)?

w ∈ L(M)?

x ∈ L(ML)?

It remains to be shown L(M ′) ∈ S ⇔ w ∈ L(M).
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Proof of Rice’s Theorem (Contd)

We show L(M ′) ∈ S ⇔ w ∈ L(M).
M ′ accepts x only, if M accepts w and if ML accepts x .

If M does not accept w , M ′ does not accept any input.
If M accepts w , then M ′ accepts the same words as ML;

L(M ′) =

{
/0 if w 6∈ L(M)

L(ML) if w ∈ L(M)

w 6∈ L(M)⇒ L(M ′) = /0
w ∈ L(M)⇒ L(M ′) = L(ML)

We know /0 6∈ S and L(ML) ∈ S.
w 6∈ L(M)⇒ L(M ′) 6∈ S
w ∈ L(M)⇒ L(M ′) ∈ S

Thus L(M ′) ∈ S ⇔ w ∈ L(M).
Core idea is to encode the answer to the acceptance problem as a property
of the language of M ′.
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Undecidable Turing Machine Problems

Many interesting problems about Turing machines are undecidable:
The halting problem (also in its restricted form).
The acceptance problem w ∈ L(M) (also restricted to ε ∈ L(M)).
The emptiness problem: is L(M) empty?
The problem of language finiteness: is L(M) finite?
The problem of language equivalence: L(M1) = L(M2)?
The problem of language inclusion: L(M1)⊆ L(M2)?
The problem whether L(M) is regular, context-free, context-sensitive.

Also the complements of these problems are not decidable; however, some
of these problems (respectively their complements) may be semi-decidable.
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Undecidable Problems from Other Domains

The Entscheidungsproblem: given a formula and a finite set of
axioms, all in first order predicate logic, decide whether the formula is
valid in every structure that satisfies the axioms.
Post’s correspondence problem: given pairs (x1,y1), . . . ,(xn,yn) of
non-empty words xi and yi , find a sequence i1, . . . , ik such that

xi1 . . .xik = yi1 . . .yik ?

The word problem for groups: given a group with finitely many
generators g1, . . . ,gn find two sequences i1, . . . , ik , j1, . . . , jl such that

gi1 ◦ . . .◦gik = gj1 ◦ . . .◦gjl

The ambiguity problem for context-free grammars: are there two
different derivations for the same sentence?

Theory of decidability/undecidability has profound impact on many areas
in computer science, mathematics, and logic.
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