Limits of Computability
Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

.M.EO
W

Wolfgang Schreiner http://www.risc.jku.at 1/29

1. Decision Problems

2. The Halting Problem

3. Reduction Proofs

4. Rice’s Theorem

Wolfgang Schreiner http://www.risc.jku.at 2/29

Decision Problems -E {.

Decision problem P.
A set of words P C X*.
w € P ...w has property P.
Interpretation as a property of words over L.
P(w) ...w has property P.
Formal definition by a formula:
P={wex*| ..}
P(w) & ...
Informal definition by a decision question:
Does word w have property ...?7
Example problem: Is the length of w a square number?
P:={weX*|3IneN:|w|=n?}
P(w): 3neN:|w| = n?
P = {&,0,0000,000000000,...}

A decision problem is the set of all words for which the answer to a
decision question is “yes".
Wolfgang Schreiner http://www.risc.jku.at 3/29

Semi-Decidability and Decidability

Problems can be the languages of Turing machines.

A problem P is semi-decidable, if P is recursively enumerable.

There exists a Turing machine M that semi-decides P.
M must only terminate, if the answer to “P(w)?" is “yes".

A problem P is decidable if P is recursive.
There exists a Turing machine M that decides P.

M must also terminate, if the answer to “P(w)?" is “no”".

yes
w —»
— M P(w)?

=

w
—

yes
>

P(w)?

no

Wolfgang Schreiner http://www.risc.jku.at

4/29

Decidability of Complement .E I(.

Theorem: If P is decidable, also its complement P is decidable.
The answer to “P(w)?" is “yes", if and only if the answer to
“P(w)?" is “no” (P(w) < ~P(w)).
Proof: If P is decidable, it is recursive, thus P is recursive, thus P is
decidable.

Theorem: P is decidable, if both P and P are semi-decidable.

If P and P are semi-decidable, they are recursive enumerable. Thus P
is recursive and therefore decidable.

Direct consequences of the previously established results about recursively
enumerable and recursive languages.

Wolfgang Schreiner http://www.risc.jku.at 5/29

Decidability and Computability %

Theorem: P C X" is semi-decidable, if and only if the partial
characteristic function 1, : ¥* —, {1} is Turing computable:

, 1 if P(w)
Lp(w):= {undefined if 2P(w)

Proof: if P is semi-decidable, there exists M such that, for every word

w € P = domain(1,), M accepts w. We can then construct M which calls
M on w. If M accepts w, M’ writes 1 on output tape. If 19_-, is Turing
computable, there exists M such that, for every word w € P = domain(1}),
M accepts w and writes 1 on the tape. We can then construct M’ which
takes w from the tape and calls M on w. If M writes 1, M’ accepts w.

Theorem: P C X" is decidable, if and only if the characteristic
function 1p : ¥* — {0,1} is Turing computable:

1 if P(w)
Lp(w):= {0 if ~P(w)

Proof: analogous.
Wolfgang Schreiner http://www.risc.jku.at 6/29

1. Decision Problems

2. The Halting Problem

3. Reduction Proofs

4. Rice’s Theorem

Wolfgang Schreiner http://www.risc.jku.at 7/29

Turing Machine Codes .N |(.

Theorem: for every Turing machine M, there exists a bit string (M),
the Turing machine code of M

such that
1. different Turing machines have different codes
if M= M, then (M) # (M');
2. we can recognize valid Turing-machine codes
w € range((.)) is decidable

3. the encoding (M) and the decoding (c)~! are Turing computable.

Core idea: assign to all machine states, alphabet symbols, and tape
directions unique natural numbers and encode every transition
0(qi,aj) = (qk, as, dr) by the tuple (i,j,k,/,r) in binary form.

A Turing machine code is also called a “Godel number”.

Wolfgang Schreiner http://www.risc.jku.at 8/29

The Halting Problem oE {.

The most famous undecidable problem in computer science.
The halting problem HP is to decide, for given Turing machine
code (M) and word w, whether M halts on input w:

HP := {({M),w) | Turing machine M halts on input word w}

(w1, wn): a bit string that reversibly encodes the pair wy, ws.
Theorem: The halting problem is undecidable.

There is no Turing machine that always halts and says “yes”, if its
input is of form ((M), w) such that M halts on input w, respectively
says “no”, if this is not the case.

The remainder of this section is dedicated to the proof of this theorem.

Wolfgang Schreiner http://www.risc.jku.at 9/29

Enumeration of Words and Turing Machines %

Theorem: There exists an enumeration w of all words over X.

w = (wp, wi,...)

For every word w’ € *, there exists i € N such that w' = w;.

The enumeration w starts with the empty word, then lists the all words
of length 1, then lists all the words of length 2, and so on. Thus every
word eventually appears in w.

Theorem: There exists an enumeration M of all Turing machines.
M = (Mo, My,...)
For every Turing machine M’ there exists i € N such that M’ = M;.
Let C = (G, Cy,...) be the enumeration of all Turing machine codes in
bit-alphabetic word order. We define M; as the unique Turing machine

denoted by C;. Since every Turing machine has a code and C
enumerates all codes, M is the enumeration of all Turing machines.

There are countably many words and countably many Turing machines.

Wolfgang Schreiner http:/ /www.risc.jku.at 10/29

Undecidability of the Halting Problem .E I(.

Proof: define h: NxN — {0,1} as

. 1 if Turing machine M; halts on input word w;
h(i,j) =

0 otherwise

If the halting problem were decidable, then h were computable.

Let M be a Turing machine that decides the halting problem.

We construct a Turing machine M}, which computes h.
M}, takes input (i,j) and computes (M;) and w;.
M}, enumerates codes (Mp),...,(M;) and words wy,...,w;.

M}, passes ((M;),w;) to M which eventually halts.

If M accepts its input, M, returns 1, else it returns 0.

It thus suffices to show that h is not computable by a Turing machine.

Wolfgang Schreiner http://www.risc.jku.at 11/29

Undecidability of the Halting Problem ‘M E‘

We assume that h is computable and derive a contradiction.
Define d : N — {0,1} as
d(i) := h(i,i)

d(i) =1: M; terminates on input word w;.
Diagonalization: d(0),d(1),d(2),... is diagonal of value table for h.

h j=0 j=1 j=2
i=0 h(0,0) h(0,1) h(0,2)
i=1 h(1,0) h(1,1) h(1,2)
i=2 h(2,0) h(2,1) h(2,2)

Since h is computable, also d is computable.

Wolfgang Schreiner http://www.risc.jku.at 12/29

Undecidability of the Halting Problem .E {'

function M(w): M
let i € N such that w = w; . 0
case d(i) of
0: return yes 1
1: loop end loop
end case
end function

Construct M which takes w and determines i € N with w = w;.
M(w) halts, if and only if d(i) =0.
Let i be such that M = M; and compute M(w;).
M(w;) halts, if and only if d(i) =0.
M(w;) halts, if and only if M;(w;) does not halt.
M(w;) halts, if and only if M(w;) does not halt.

By letting M reason about its own behavior, we derive a contradiction.
Wolfgang Schreiner http://www.risc.jku.at 13/29

1. Decision Problems

2. The Halting Problem

3. Reduction Proofs

4. Rice’s Theorem

Wolfgang Schreiner http://www.risc.jku.at 14/29

Reduction Proofs

We can construct a partial order on decision problems.

Decision problem P C ¥* is reducible to P' CT* (P < P'), if there is
a computable function f : ¥* — '™ such that

P(w) < P'(f(w))

w has property P if and only if f(w) has property P’.
Theorem: For all decision problems P and P’ with P < P’, it holds

that, if P is not decidable, then also P’ is not decidable.

Proof: we assume that P’ is decidable and show that P is decidable.

Since P’ is decidable, there is a Turing machine M’ that decides P’.
We construct M that decides P:

function M(w):
w' <« f(w)
return M'(w')

end function

f(w)

Wolfgang Schreiner

yes

M

yes

P(f(w))?

P(w)?

no

no

http://www.risc.jku.at

15/29

Y
Undecidability of the Restricted Halting Problem .E I(.

To show that some problem P is not decidable, if suffices to show that, if
P is decidable, also the the halting problem HP is decidable.

Theorem: the restricted halting problem RHP is not decidable.

RHP := {(M) | Turing machine M halts on input word €}

Decide, for given (M), whether M halts for input word €.

Pattern for many undecidability proofs.

Wolfgang Schreiner http://www.risc.jku.at 16/29

Undecidability of the Restricted Halting Problem

We assume that RHP is decidable and show that HP is decidable.

Since RHP is decidable, there exists Mg such that Mg accepts
input ¢, if and only if ¢ is the code of some M which halts on input €.
We can then define My, which accepts input (c,w), if and only if ¢ is
the code of some M that terminates on input w:

My constructs from (c,w) the code of some M’ which first prints w
on its tape and then behaves like M.
M’ terminates for input € (which is ignored and overwritten by w) if

and only if M terminates on input w.

My accepts its input, if and only if Mg accepts (M').

function My ((M),w):
(M') := compute({M), w)
return Mg((M'))

end function

(M), w

(M)

Wolfgang Schreiner

yes

My

yes

M’ halts on €?

M halts on w?

no

no

http://www.risc.jku.at

17/29

Undecidability of the Acceptance Problem N

Theorem: the acceptance problem AP is not decidable.
AP :={((M),w) | w € L(M)}
Decide, for given M and w, whether M accepts w.
Proof: we assume AP is decidable and show HP is decidable.
Since AP is decidable, there exists M4 such that My accepts (c,w), if
and only if ¢ is the code of some M which accepts w.
We define My, which accepts input (c,w), if and only if ¢ is the code
of some M that halts on input w.
If ¢ is not well-formed, then My does not accept its input.
Otherwise, My modifies (M) to (M') where M’ behaves as M, except
that, if M halts and does not accept, M’ halts and accepts.
M’ thus accepts input w, if and only if M halts on input w.
My accepts its input, if My accepts ((M'), w).

function My((M), w): My

(M') == compute((M)) | | (psy, w (M), w yes e

return Ma((M'), w) - = My |welL(M)? |M halts on w?
end function o e

Wolfgang Schreiner http://www.risc.jku.at 18/29

Semi-Decidability of the Acceptance Problem .E l(.

An undecidable problem may be semi-decidable.

Theorem: the acceptance problem AP is semi-decidable.

There is some Turing Machine that halts and says “yes", if its input is
of form ((M),w) with w € L(M) (and does not halt or says “no”, else).

Proof: we construct a “universal Turing machine” M, with language
AP which acts as an “interpreter” for Turing machine codes: given
input ((M),w), M, simulates the execution of M for input w:
If the real execution of M halts for input w with/without acceptance,
then also the simulated execution halts with/without acceptance; thus
M, accepts its input (c,w), if in the simulation M has accepted w.
If the real execution of M does not halt for input w, then also the
simulated execution does not halt; thus M, does not accept its input.

Turing machines can be “interpreted/simulated” by other Turing machines.

Wolfgang Schreiner http://www.risc.jku.at 19/29

.,

Halting versus Acceptance E l(

We know that the halting problem is reducible to the acceptance problem.

Theorem: the acceptance problem is reducible to the halting prob.
HP < AP and AP < HP.

Proof: assume that there exists My which decides the halting
problem. Then we can construct My which decides acceptance:

For input (c,w), Mp decides whether bit string c is a valid code of
some M, i.e., ¢ = (M). If not, then M, does not accept its input.
Otherwise, My forwards ((M),w) to My:
If My does not accept ((M),w), then M does not halt on input w;
thus M4 halts without accepting ((M), w).
If My does accept ((M),w), then M halts on input w; in this case, My
invokes My, on ({M),w) whose simulation of M on input w also halts
with or without accepting w. Then My halts with the same result.

The halting problem and the acceptance problem are “equivalent”.

Wolfgang Schreiner http://www.risc.jku.at 20/29

Semi-Decidability of Other Problems .E I(.

Theorem: the halting problem HP is semi-decidable.
Proof: we construct Turing machine M’ which takes ({(M),w) and
simulates the execution of M on input w. If (the simulation of) M
halts, M’ accepts its input. If (the simulation of) M does not halt, M’
does not halt (and thus not accept its input).

Theorem: the non-acceptance problem NAP and the non-halting

problem NHP are not semi-decidable.
Proof: if both a problem and its complement were semi-decidable, they
would be complementary recursively enumerable languages; thus they
would be recursive and the problem and its complement decidable.

Problem semi-decidable decidable
Halting yes no
Non-Halting no no
Acceptance yes no
Non-Acceptance | no no

There exist problems that are not even semi-decidable.
Wolfgang Schreiner http://www.risc.jku.at 21/29

1. Decision Problems

2. The Halting Problem

3. Reduction Proofs

4. Rice’s Theorem

Wolfgang Schreiner http://www.risc.jku.at 22/29

Properties of Recursively Enumerable Languages .E I(.

Property S of recursively enumerable languages:
A set of recursively enumerable languages.
S is non-trivial:

there is at least one r.e. language in S, and
there is at least one r.e. language not in S.

Some r.e. languages have the property and some do not.

S is decidable: Pg is decidable.
Ps :={(M) | L(M) € S}
Given (M), it is decidable whether the language of M has property S.

Decision questions about the semantics of Turing machines.

Wolfgang Schreiner http:/ /www.risc.jku.at 23/29

Rice’s Theorem g?

Rice's Theorem: every non-trivial property of recursively enumerable
languages is undecidable.
There is no Turing machine which for every possible Turing machine M
can decide whether the language of M has a non-trivial property.
All non-trivial questions about the behavior (semantics) of Turing
machines are undecidable.
Also for Turing computable functions.
Also for other Turing complete computational models.
Nevertheless, for some machines a decision may be possible.
For some machines, it is possible to decide termination.
However, no method can perform such a decision for all machines.
No method can exist to decide termination for every possible machine.
Not applicable to questions about form (syntax) of Turing machines.
Does Turing machine M have more than n states?
Not applicable to trivial questions.
Is the language of Turing machine M recursively enumerable?

Fundamental limit to automated reasoning about Turing complete models.
Wolfgang Schreiner http://www.risc.jku.at 24/29

M W,
Proof of Rice’s Theorem E l(

We assume that non-trivial property S of recursively enumerable
languages is decidable and derive a contradiction.
We may assume that 0 € S.
Otherwise continue with S.
If S is not decidable, S is not decidable.
Since S is decidable, there exists Ms which decides S.
Assume we can compute, for every ((M),w), code (M’) such that

LIM)eSeweL(M)
M’ has property S if and only if M accepts w.
Then we can construct M4 which decides the acceptance problem:

function Ma((M), w): N M, .
(M') := compute((M)) ((M),w) | (M) y y
return Ms((M')) Ms | L(M)eS? | weL(M)?
end function no no

It remains to be shown how to compute appropriate (M’).

Wolfgang Schreiner http://www.risc.jku.at 25/29

Proof of Rice’s Theorem (Contd)

We construct (M') with L(M") € S < w € L(M).

M, enumerates all possible Turing machine codes and applies Mg to
decide whether this code has property S.
Since S is not-trivial and thus not empty, eventually code (M) € S
with L(M_) € S is found.
Then My constructs the code (M') of the following M':

function M'(x):
if w e L(M) then
if x € L(M) then
return yes
else
loop end loop
end if
else
loop end loop
end if
end function

M

My

yes

yes

x e L(Mp)?

we L(M)A
x € L(ML)?

It remains to be shown L(M') € S & w € L(M).

Wolfgang Schreiner

http://www.risc.jku.at

26/29

Proof of Rice’s Theorem (Contd) .E I(.

We show L(M') € S < w € L(M).

M’ accepts x only, if M accepts w and if M, accepts x.
If M does not accept w, M’ does not accept any input.
If M accepts w, then M’ accepts the same words as M ;

N if we L(M)
LMY = {L(ML) if we L(M)

we L(M)= L(M')=0
we L(M)= L(M') = L(M})
We know 0 ¢ S and L(M) € S.
we L(M)= L(M') ¢S
weLM)=LM)eS
Thus L(M') € S & w € L(M).

Core idea is to encode the answer to the acceptance problem as a property
of the language of M'.

Wolfgang Schreiner http://www.risc.jku.at 27/29

Undecidable Turing Machine Problems .E {'

Many interesting problems about Turing machines are undecidable:
The halting problem (also in its restricted form).
The acceptance problem w € L(M) (also restricted to € € L(M)).
The emptiness problem: is L(M) empty?
The problem of language finiteness: is L(M) finite?
The problem of language equivalence: L(M;) = L(M>)?
The problem of language inclusion: L(My) C L(M,)?
The problem whether L(M) is regular, context-free, context-sensitive.

Also the complements of these problems are not decidable; however, some
of these problems (respectively their complements) may be semi-decidable.

Wolfgang Schreiner http://www.risc.jku.at 28/29

Undecidable Problems from Other Domains '<§°

The Entscheidungsproblem: given a formula and a finite set of
axioms, all in first order predicate logic, decide whether the formula is
valid in every structure that satisfies the axioms.

Post’s correspondence problem: given pairs (x1,y1),...,(Xn,¥n) of
non-empty words x; and y;, find a sequence i,..., i, such that

Xy - Xiy. = Yiy "‘yik?

The word problem for groups: given a group with finitely many
generators gi,...,gn find two sequences i,..., ik, ji,-..,j; such that
8 ©-.-08iy =8j;°...08j
The ambiguity problem for context-free grammars: are there two

different derivations for the same sentence?

Theory of decidability/undecidability has profound impact on many areas

in computer science, mathematics, and logic.
Wolfgang Schreiner http://www.risc.jku.at 29/29

	Decision Problems
	The Halting Problem
	Reduction Proofs
	Rice's Theorem

