
The Operating System Machine Level

The Operating System Machine Level

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at
http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC

The Operating System Machine Level

The Operating System Machine (OSM)

The OSM is implemented by the operating system.

�Operating System (OS):
{ Program that adds new instructions and features to the ISA.
� The new instructions are called system calls (traps).

{ Implemented in software but can be also considered as a (virtual) machine.
� OS is an interpreter for a system call.

Level 1

Level 2

Level 3 Operating system machine level

Microarchitecture level

Operating system

Instruction set architecture level

Microprogram or hardware

Instruction set available to application programmers.

Wolfgang Schreiner 1

The Operating System Machine Level

Operating System Services

An OS provides important services to the application programmer.

� Process control:
{ Let a processor \simultaneously" execute multiple processes.

�Memory control:
{ Let machine appear to have more memory than it actually has.

� File control:
{ Pretend that �les are linear sequences of bytes.

Prominent examples are Unix/Linux and Windows NT/2000/XP.

Wolfgang Schreiner 2

The Operating System Machine Level

Process Control

Wolfgang Schreiner 3

The Operating System Machine Level

Processes

A process is an application program in execution.

�When the user starts a program, a new process is created.
{ The operation system manages process execution.

� Process consists of various components:
{ executable code loaded from disk into memory,
{ the stack, a memory are where program data are located,
{ the heap, a memory area where the program may allocate additional data space,
{ the (contents of the) program registers including the program counter and a stack pointer,
{ other information such as user privileges.

Windows: CTRL-ALT-DEL) task manager.

Wolfgang Schreiner 4

The Operating System Machine Level

Process

program

registers

stack

heap

process

Wolfgang Schreiner 5

The Operating System Machine Level

Process Scheduling

Process may be in one of three states:

� Executing:
{ The processor executes instructions of this process.

� Ready:
{ The process is ready for execution but the processor executes instructions of another process.

� Blocked:
{ The process waits for some event, e.g., keyboard input. executing

blocked ready

waiting for input

input received

preempted
by os

selected by os

Wolfgang Schreiner 6

The Operating System Machine Level

Process Management

� At any time, the OS holds a pool of ready processes.
{ At most one process is executing.

� Preemptive Scheduling:
{ Executing process receives a certain time slice.
{ After the time slice has expired, OS preempts process.
{ Process is put into ready pool, another ready process is scheduled for execution.
{ Rapid switching (say every 50 ms) creates the illusion that processes are simultaneously active.

� To request an OS service, a process performs a trap:
{ Special processor instruction that gives control to the OS.
{ OS takes data from registers and determines which service to perform (e.g. output).
{ OS invokes system service that interacts with hardware device.
{ OS returns control to application.

Wolfgang Schreiner 7

The Operating System Machine Level

Multi-Processing

The OS schedules the CPU among multiple processes.

(b)

Time

Process 3

Process 2

Process 1

Process 3

Process 2

Process 1

Process 3 waiting for CPU

Process 1 running

(a)

Time

Multi-processing: multiple processes may run at the \same" time.

Wolfgang Schreiner 8

The Operating System Machine Level

Memory Control

Wolfgang Schreiner 9

The Operating System Machine Level

Virtual Memory

Program may need more memory than computer has.

� Tradition solution was the use of overlays.
{ Programmer divided a program into a number of overlays (pieces).
{ Overlays could be stored on secondary memory (disks).
{ Only one overlay was in computer memory at a time.

� Programmer was in charge for managing the overlays.
{ Reading overlays from disk to memory, writing overlays from memory to disk.
{ Di�cult and error-prone task.

� Still used in the 1990s for DOS/Windows 3.x programs.

Virtual memory emerged from the automation of overlay management.

Wolfgang Schreiner 10

The Operating System Machine Level

Address Spaces

Idea: separate the address space from physical memory locations.

� Virtual address space.
{ Set of addresses to which program can refer.
{ Size depends on needs of program.

� Physical address space.
{ Set of adddresses where data can be stored.
{ Size restricted by cost of hardware.

� Pages: blocks of addresses of �xes size.
{ E.g. 4096 bytes: page 0{4095, page 4096{8191, page 8192{12287, . . .
{ Virtual address space is organized in pages.

Mapping

Address space

Address

8191

4096

0

4095

0

4K Main
memory

Virtual addresses are mapped to physical addresses.

Wolfgang Schreiner 11

The Operating System Machine Level

Pages and Page Frames

Physical memory has frames that can hold virtual memory pages.

(a) (b)

Page Virtual addresses

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

61440 – 65535

57344 – 61439

53248 – 57343

49152 – 53247

45056 – 49151

40960 – 45055

36864 – 40959

32768 – 36863

28672 – 32767

24576 – 28671

20480 – 24575

16384 – 20479

12288 – 16383

 8192 – 12287

4096 – 8191

 0 – 4095

7

6

5

4

3

2

1

0

Page
frame

Bottom 32K of
main memory

Physical addresses

28672 – 32767

24576 – 28671

20480 – 24575

16384 – 20479

12288 – 16383

 8192 – 12287

4096 – 8191

 0 – 4095

Wolfgang Schreiner 12

The Operating System Machine Level

Page Table
Page table

Page
frame

0

1

0

0

1

0

0

1

0

1

1

0

1

0

1

1

0

4

0

0

5

0

0

3

0

7

6

0

2

0

0

1

Main memory
Page
frame

1 = Present in main memory
0 = Absent from main memory

7

6

5

4

3

2

1

0

Virtual page 6

Virtual page 5

Virtual page 11

Virtual page 14

Virtual page 8

Virtual page 3

Virtual page 0

Virtual page 1

Virtual
page

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Mapping of pages to page frames.

� Presence/absence bit.
{ Tells which table entries are in memory.
{ Other entries are located on disk.

Some pages are in physical memory,
some are on disk.

Wolfgang Schreiner 13

The Operating System Machine Level

Example

� Program needs 16 KB memory with addresses 0{16383 (=214�1).

Virtual Address Physical Address
0 65536
4096 61440
8192 32768
12288 4096

� Page table maps page at address 4096 to physical address 61440.

� Process references memory word at virtual address 4201.

�Memory management unit looks up table and computes:
{ (4201� 4096) + 61440 = 105 + 61440 = 61545

� Physical address 61545 is sent via system bus to main memory.

Wolfgang Schreiner 14

The Operating System Machine Level

Memory Management Unit (MMU)

Chip for address translation.
Present/absent
bit

Virtual
page

Page
table

15-bit

1

Memory address

Output
register

1 110

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

1 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 Input
register

20-bit virtual page 12-bit offset

32-bit virtual address

�Maps virtual to physical addresses.
{ Virtual: 32 bit.
{ Physical: 15 bit (e.g.).

� Virtual address is decomposed.
{ Virtual address = virtual page : page o�set.
{ Page size: 4096 bytes (e.g.)
{ 12 bit page o�sets (212 = 4096).
{ 20 bit virtual page (32� 12 = 20).

� Page table gives page address:
{ Indexed by virtual page.
{ Gives higher order bits for physical address.

Wolfgang Schreiner 15

The Operating System Machine Level

Paging

When a referenced page is not in memory, a page fault occurs.

� Normal program execution is interrupted.
{ Write some page in main memory to disk.
{ Read required page from disk to main memory.
{ Enter its physical memory location in the page table.
{ Repeat the instruction that caused the fault.

� Initially: no page in memory (all present bits set to 0).
{ When CPU tries to fetch instruction, �rst page is loaded.
{ If program refers to other pages, these pages are also loaded.
{ The set of pages required by the program (its working set) is eventually loaded.

Pages are only loaded by page faults (demand paging).

Wolfgang Schreiner 16

The Operating System Machine Level

Page Replacement

For each page to be loaded, another one must be stored on disk.

� A page replacement policy is needed.
{ Algorithm that tries to predict which page in memory is least useful.
� Its absence would have the smallest adverse e�ect on the running program.

{ Select page that is not needed for the longest time in the future.
� Problem is that OS cannot look in the future.

� Least Recently Used (LRU) algorithm.
{ Select page that was least recently used.
{ Probability that this page is not in the program's current working set is high.
{ Nevertheless pathalogical situations may occur.

A variant of LRU is used in most operating systems.

Wolfgang Schreiner 17

The Operating System Machine Level

Paging

� Paging frees applications from the limits of physical memory.
{ Virtual address space of a process may be much larger than physical address space.
{ Only the available disk space limits the size of a program.
{ Have some swap space available (e.g., 256 MB swap space for 512 MB main memory).

� Programs may assume arbitarily large virtual address space.
{ Pages are automatically loaded/stored from/to disk.
{ Transparency: programs need not be aware of virtual memory at all.

� But paging is slow:
{ Memory access time: 1 ns; disk access time: 10 ms.
{ Reading a page from disk is one million times slower than reading a memory cell.

Buy more memory rather than a faster processor.

Wolfgang Schreiner 18

The Operating System Machine Level

Memory Protection

Kernel

0

1

2

3

Level

Possible uses of
the levels

Sy
� stem� cal

�
ls

Shared l
�
i
�
b

�
raries

User p� ro� g� rams	

� At each instant, a program operates in one protection level.
{ Indicated by 2-bit �eld in PSW (Program Status Word) register.
{ Access to data at lower level are illegal.
� A trap is generated.

{ Only procedures at lower levels may be called.
� Only access to o�cial entry points in lower level.

Wolfgang Schreiner 19

The Operating System Machine Level

File Control

Wolfgang Schreiner 20

The Operating System Machine Level

Files

A �le is a core abstraction of the virtual I/O.

� File: sequence of bytes written to an I/O device.
{ Device may be a disk: data can be read back later.
{ Device may be a printer: data cannot be read back.
{ Further �le structure is up to application programs.

� File I/O: sequence of system calls.

1. Open a �le: locate �le on disk and bring into memory information necessary to access it.
2. Read or write data from/to �le.
3. Close the �le: free space used to hold �le information.

OS provides abstraction from concrete hardware control.

Wolfgang Schreiner 21

The Operating System Machine Level

Reading a File

/* open the files */
in = open("infile", 0);
out = creat("outfile", PROTECTION);

/* copy data from one file to the other */
do {
count = read(in, buffer, BSIZE);
if (count > 0) write(out, buffer, count);

} while (count > 0);

/* close the files */
close(in);
close(out);

Wolfgang Schreiner 22

The Operating System Machine Level

Reading a File

Copy data from �le to memory.

� System call read:
{ Indication which �le is to be read.
{ Pointer to a memory bu�er
in which to put the data read.

{ Number of bytes to be read.
� Each open �le has a pointer to the next byte position to be read.

{ read puts a certain number of bytes into bu�er.
{ Pointer is advanced by the number of bytes read.
{ read returns number of bytes read.

Subsequent read calls read consecutive blocks of data.

Wolfgang Schreiner 23

The Operating System Machine Level

File Organization

How is the space for a �le organized on a disk?

� File may be organized in consecutive sectors.
{ Used for CD-ROM �le systems (�le size known in advance).

� File may be organized in random sectors.
{ Used for hard disk �le systems (�le grows dynamically).

Sector 11

Sector
1

(a)

Sector 0

Read/
write
head

Direction
of disk
rotation

12
0 13

14

1

2�

3

4
56

7

8�

9
10

11

Sector 11

Sector
1

(b)

Sector 0

Read/
write
head

Direction
of disk
rotation

4

7

10

2

Track 4

Track 0
3

5

6

0�

1
2�

11

14 13

9

1

8�

Wolfgang Schreiner 24

The Operating System Machine Level

File View

OS sees �le di�erent than application programmer.

�OS sees a �le as a collection of blocks on disk.
{ Application programmer sees a linear sequence of bytes.

� File index holds disk addresses of �le blocks.
{ Typically organized as a list of disk block addresses.

OS maps �le index information to linear byte sequence.

Wolfgang Schreiner 25

The Operating System Machine Level

Free Blocks

OS must know which sectors on disk are free for allocation.

� Free List: a list of all \holes" on disk.
{ Position and size of each hole.

� Bit map: one bit per �le block.
{ Bit 1 indicates that �le block is in use.

(a)

(b)

Sector

0
0
1
0
1

0
0
0
0
1

0
0
1
0
1

0
0
0
1
0

0
0
0
1
0

0
0
1
1
0

1
0
0
1
0

0
0
0
1
0

0
0
0
1
0

0
0
0
0
0

0
1
0
0
0

0
0
0
0
1

0

0
1
2
3
4

Track 1 2 3 4 65 7 8 9 10 11

Track Sector Number of
sectors
in hole

0
0
1
1
2
2
2
3
3
4

0
6
0
11
1
3
7
0
9
3

5
6
10
1
1
3
5
3
3
8

Wolfgang Schreiner 26

The Operating System Machine Level

Block Sizes

How large should a �le block be?

� Advantage of larger �le blocks:
{ About 10 ms needed to seek �le block.
{ Reading 1KB block takes about 0.125 ms, reading 8 KB block takes about 1 ms.
{ It is much better to read 8 KB at once than 8 times 1 KB.

� Advantage of smaller �le blocks:
{ Mininimum �le size is 1 block.
{ Also for larger �les, half of the space of the last block is wasted in average.
{ If �les are small, much disk space may be wasted.

Today, larger blocks are used, because transfer e�ciency is critical.

Wolfgang Schreiner 27

The Operating System Machine Level

Directory Management

Files are grouped in directories.

� Various system calls:
{ Create a �le and enter it in a directory.
{ Delete a �le from a directory.
{ Rename a �le.
{ Change protection status of a �le.

�Directory itself is a �le.
{ May be listed in another directory.
{ Tree of directories emerges.

File 0

File 1

File 2

File 3

File 4

File 5

File 6

File 7

File 8

File 9

File 10

File name: Rubber-ducky

Length:

Type:

Creation date:

Last access:

Last change:

Total accesses:

Block 0:

Block 1:

Block 2:

Block 3:

1840

Anatidae dataram

March 16, 1066

September 1, 1492

July 4, 1776

144

Track 4

Track 19

Track 11

Track 77

Sector 6

Sector 9

Sector 2

Sector 0

Directory may keep various pieces of data on a �le.

Wolfgang Schreiner 28

The Operating System Machine Level

Example: Unix

Wolfgang Schreiner 29

The Operating System Machine Level

Unix

� 1970: Ken Thompson, Dennies Ritchie at the AT&T Bell Labs.
{ Written for the PDP-7 in assembler; new version for the PDP-11 in C.
{ 1974 landmark paper in the Communications of the ACM.

� BSD Unix (Berkeley System Distribution).
{ Unix version by the University of California at Berkeley.
{ Inclusion of the TCP/IP protocol (later chosen for the Internet).

� 1984: System V Unix by AT&T.
{ Split in the Unix world between BSD and System V.

� IEEE P1003 standard: POSIX (Portable Operating System-IX).
{ Supported (and extended) by all Unix systems including Linux.

� 1990s: Linux (Linus Torvalds and many others)
{ Based on the GNU environment (Richard Stallman and many others).

Wolfgang Schreiner 30

The Operating System Machine Level

Unix Architecture

Small kernel with a modular layer of device drivers at the bottom.

Shell User program

System call interface

File system Process management

Block cache IPC Scheduling

Hardware

Device drivers

User
mode

Kernel
mode

Memory mgmt.Signals

GUIs (X-Windows based KDE or GNOME) operate in user mode.

Wolfgang Schreiner 31

The Operating System Machine Level

Unix Virtual Memory

Linear address space (no segments) divided in three parts.

Address

0xFFFFFFFF

0
Code

Data

Stack

� Entire address space is paged.
{ Program may be larger than machine's physical memory.
{ (Portions of) �les may be mapped into the address space.
� Memory-mapped �les may be used for inter-process communication.

Wolfgang Schreiner 32

The Operating System Machine Level

Unix Directory System

/usr/ast/bin
�

Data files

game 1

game 2

game 3

game 4

…

/usr/ast
�

bin

data

foo.c

…

/usr/jim
�

jotto
�

…

Root directory

bin

dev

lib

usr

…
/lib

�

…

/usr
�

ast

jim
�

…
/de

�
v

…

/bin
�

…

All disks are mounted in a
single directory hierarchy.

� All �les can be reached from the root:
{ An absolute path lists all directories from root to a �le.

/usr/jim/jotto

{ A relative path lists all directories from
the working directory of a process.
� Process working directory is /usr/ast.
� Relative path bin/game3.

{ A �le may be linked to another �le.
� Both paths /usr/ast/bin/game3
and /usr/jim/jotto refer to the same �le.

Wolfgang Schreiner 33

The Operating System Machine Level

Unix File Systems

To each �le, a 64-byte i-node is associated.

� I-node (index node).
{ File type and protection, number of links to the �le, owner's identity and group, �le length.
{ The time the �le was last read and written; the time the i-node was last changed.
{ 13 disk addresses.
� The �rst 10 addresses point to data blocks.
� Remaining addresses point to indirect blocks (blocks that point to data blocks or other
indirect blocks: double indirect and triple indirect blocks).

� I-nodes are located at the beginning of the �le system.
{ Given an i-node number, the i-node can be located.

Directory entries consist of �le names and i-node numbers.

Wolfgang Schreiner 34

The Operating System Machine Level

Unix Process Management

Unix supports multiple processes and multiple threads within a process.

� Processes:
{ A process can create a replica of itself (fork).
{ Both processes have separate address spaces.
{ The newly created child process can replace its program by any other program (exec).
{ Processes may communicate respectively synchronize via signals, pipes, semaphores, messages,
shared memory.

� Threads:
{ Within a process, multiple threads (light-weight processes) may execute.
{ Threads share the data space of the process.
{ Threads within a process can communicate via shared variables and synchronize via mutexes
and condition variables.

Wolfgang Schreiner 35

