CafeOBJ

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

1. A Quick Overview

2. More Details

3. More Advanced Features

CafeOBJ: an algebraic specification language/system.

- 1995–: Japan Institute of Advanced Science and Technology (JAIST).
 Kokichi Futatsugi (JAIST), Razvan Diaconescu (IMAR institute, Romania), et al.

- A member of the OBJ language family.
 - Since 1970s: Josef Goguen (Univ. of California at San Diego), et al.
 - From http://www.cse.ucsd.edu/users/goguen/sys/obj.html:
 The OBJ languages are broad spectrum algebraic programming and specification languages, based on order sorted equational logic, possibly enriched with other logics (such as rewriting logic, hidden equational logic, or first order logic), and providing the powerful module system of parameterized programming.

- Current Version (2012): 1.4.8
 - Open source implementation in Common Lisp.
 - Binaries for Linux, Windows, Mac OS provided.

Starting CafeOBJ

> cafeobj
-- loading standard prelude
; Loading /usr3/cafeobj-1.4/prelude/std.bin

-- CafeOBJ system Version 1.4.8(PigNose0.99,p33) --
built: 2011 Dec 9 Fri 5:09:41 GMT
prelude file: std.bin

2012 Jan 31 Tue 13:09:26 GMT
Type ? for help

-- Containing PigNose Extensions --

built on International Allegro CL Enterprise Edition
8.2 [Linux (x86)] (Dec 9, 2011 14:09)
CafeOBJ>
Defining Tight Modules

- module! STACK
 - Introduce a “tight module”: a named specification with initial (executable) semantics.
 - protecting (NAT)
 - Import another specification preserving its model.
 - signature { [sorts] opns }
 - Pattern matching on the left hand side of each equation.
 - Note the period after each equation (preceded by a blank).
 - axioms { var vars equns }
 - Executable specifications.

Predefined Modules

CafeOBJ provides a library of predefined modules.

- Some modules are automatically imported.
 - BOOL: sort Bool, ops. true, false, not, and, or, xor, implies.
- Other modules require explicit import.
 - NAT: sort Nat, number literals, operations 0, s, 1, +, * , <, <=,...
 - INT: sort Int, literals and operations as for NAT extended by \(-\).
 - RAT: sort Rat, literals and operations as for INT extended by /.
 - CHARACTER: sort Character with various operations.
 - STRING: sort String with various operations.

Showing Module Contents

CafeOBJ> show NAT
; Loading /usr3/cafeobj-1.4/lib/nat.bin
...
sys:mod! NAT principal-sort Nat
{...
 signature {
 op s _ : Nat -> NzNat { demod }
 pred _ >= _ : Nat Nat { demod }
 pred _ > _ : Nat Nat { demod }
 pred _ <= _ : Nat Nat { demod }
 pred _ < _ : Nat Nat { demod }
 op _ * _ : Nat Nat -> Nat { assoc comm idr: 1 demod r-assoc }
 pred _ * _ : Nat Nat -> Nat { assoc comm idr: 0 demod r-assoc }
 op sd : Nat Nat -> Nat { comm demod }
 op _ quo _ : Nat NzNat -> Nat { demod }
 op _ rem _ : Nat NzNat -> Nat { demod l-assoc }
 pred _ divides _ : NzNat Nat { demod }
 op _ p _ : NzNat -> Nat { demod }
 }
}...
Evaluating Terms

CafeOBJ> open STACK
-- opening module STACK.. done.
%STACK> reduce top(pop(push(2, push(1, empty)))) .
-- reduce in %STACK : top(pop(push(2,push(1,empty))))
1 : NzNat
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)
%STACK> reduce top(pop(push(1, empty))) .
-- reduce in %STACK : top(pop(push(1,empty)))
top(empty) : Nat
(0.000 sec for parse, 1 rewrites(0.000 sec), 2 matches)
%STACK> close

Commands open/close enter/leave the context of a module; command reduce evaluates terms (note the period preceded by a blank).

Tracing Evaluations

%STACK> set trace on
%STACK> reduce top(pop(push(2, push(1, empty)))) .
-- reduce in %STACK : top(pop(push(2,push(1,empty))))
1>[1] rule: eq pop(push(N: Nat,S: Stack))
 = S
 { N: Nat |-> 2, S: Stack |-> push(1,empty) }
1<[1] pop(push(2,push(1,empty))) --> push(1,empty)
 = N
 { N: Nat |-> 1, S: Stack |-> empty }
1<[2] top(push(1,empty)) --> 1
1 : NzNat
(0.000 sec for parse, 2 rewrites(0.000 sec), 2 matches)

Command set trace on shows rules applied in the reduction.

Tracing Evaluations (Contd)

%STACK> set trace whole on
%STACK> reduce top(pop(push(2, push(1, empty)))) .
-- reduce in %STACK : top(pop(push(2,push(1,empty))))
1>[1] rule: eq pop(push(N: Nat,S: Stack))
 = S
 { N: Nat |-> 2, S: Stack |-> push(1,empty) }
1<[1] pop(push(2,push(1,empty))) --> push(1,empty)
[1]: top(pop(push(2,push(1,empty))))
 --> top(push(1,empty))
 = N
 { N: Nat |-> 1, S: Stack |-> empty }
1<[2] top(push(1,empty)) --> 1
[2]: top(push(1,empty))
 --> 1
1 : NzNat
(0.000 sec for parse, 2 rewrites(0.010 sec), 2 matches)

1. A Quick Overview
2. More Details
3. More Advanced Features
Identifiers

Almost arbitrary strings may denote names of sorts and operators.
- Identifier `x-value`
 - Difference term `x - value`
- Identifier `x+value`
 - Sum term `x + value`
- Identifier `x*value`
 - Sum term `x * value`
- ...

Always use blanks around infix/mixfix operators.

Wolfgang Schreiner
http://www.risc.jku.at

13/28

Modules

- Every module introduces a name space.
- Only entities declared in a module can be directly referenced within the module.
 - By their unqualified name.
- Entities of other modules can be referenced by qualified names.
 - `name.module: entity name in module`.
- Other modules may be imported.
 - Remote entities become visible.
 - Can be referenced like local entities.
 - Ambiguities can be resolved by qualification with module name.
- Imported modules are not duplicated.
- Multiple imports of a module share the same model.

Wolfgang Schreiner
http://www.risc.jku.at

14/28

Sorts

A signature may introduce one or more sorts.

- Sequence of sort names separated by blanks.
 - Note the blanks after `[` and before `]`.
- Sorts may be partially ordered:
 - `[Nat < Int < Rat, Int < Float]`
- Subsort `< Supersort`
- Sort order is interpreted as set inclusion.
 - The type checker considers values of the subsort also as values of the supersort.

The use of subsorts may simplify specifications considerably.

Wolfgang Schreiner
http://www.risc.jku.at

15/28

Operators

A signature may introduce "operators" (operations/constants).

- Note the blanks around the tokens `"\":"` and `"\"->\""`.
- Operators may be declared as infix/mixfix by the use of `\"\"`.
- Multiple operators may be declared with the same arity.
- Operator names may be overloaded.

Wolfgang Schreiner
http://www.risc.jku.at

16/28
Predicates

Predicates are operators with target sort Bool

- $\text{op } \text{name} : \text{argument sorts} \rightarrow \text{Bool}$
- $\text{pred } \text{name} : \text{argument sorts}$

pred can be used as a shorthand for predicate declarations.

- $\text{pred } \text{<_} : \text{Nat Nat}$
- The (in)equality predicate is implicitly defined on each sort.

- $\text{pred } \text{===} : \text{S S}$
- $\text{pred } \text{=/=} : \text{S S}$

- Equality is defined in terms of evaluation.
- $(t == t') = \text{true}$ if t and t' evaluate to a common term.
- Works correctly iff term rewriting system is Noetherian and confluent.

CafeOBJ considers predicates just as normal operators.

Axioms

Axioms declare variables and (conditional) equations.

- $\text{var } \text{name} : \text{sort}$
- $\text{vars } \text{name1 } \text{name2 } \ldots : \text{sort}$
- $\text{eq } \text{term} = \text{term}$.
- $\text{ceq } \text{term} = \text{term} \text{ if boolean-term}$.

- Syntax pitfalls:
 - Note the blanks around the tokens "=" and "=".
 - Note the period "." preceded by a blank.
- Equations may be labeled:
 - $\text{var } \text{N} : \text{Nat}$
 - $\text{eq} \text{[right-id] : N+0 = N}$
 - $\text{Labels are printed in reduction traces.}$

Equations of arbitrary shape are allowed but only especially constrained
equations are used as reduction rules (to be discussed later).

Example

module! GCD
{
 protecting (INT)
 signature
 {
 op gcd : Int Int -> Int
 }
 axioms
 {
 vars N M : Int
 eq gcd(N, 0) = N .
 eq gcd(0, M) = M .
 ceq gcd(N, M) = gcd(N - M, M) if N >= M and M > 0 .
 ceq gcd(N, M) = gcd(N, M - N) if M >= N and N > 0 .
 }
}

%GCD> reduce gcd(15,12) .
-- reduce in %GCD : gcd(15,12)
3 : NzNat
(0.000 sec for parse, 45 rewrites(0.010 sec), 95 matches)

Context Variables

CafeOBJ> open GCD
-- opening module GCD.. done.
%GCD> let a = 15 .
-- setting let variable "a" to :
15 : NzNat
%GCD> let b = 12 .
-- setting let variable "b" to :
12 : NzNat
%GCD> show let
[bindings]
b = 12
a = 15
%GCD> reduce gcd(a,b) .
-- reduce in %GCD : gcd(a,b)
3 : NzNat
(0.000 sec for parse, 45 rewrites(0.000 sec), 95 matches)

Command let to bind variables in current module context.
Local Bindings

Unfortunately CafeOBJ does not support local bindings in a term.

- Abstract specification:
 \[f(x, y) = \text{let } z = x \times x \text{ in } x + y \times z \]

- CafeOBJ:
 \[
 \begin{align*}
 \text{eq } f(x, y) & = f0(x, y, x \times x) \\
 \text{eq } f0(x, y, z) & = x \times y \times z
 \end{align*}
 \]

Use auxiliary operators as a substitute for local bindings.

Operator Attributes

There is a shorthand notation for some special axioms.

\[
\text{op } \text{name} : \text{argument sorts } \rightarrow \text{result sort } \{ \text{attributes} \}
\]

Example:
\[
\text{op } +_\text{S} : \text{S} \rightarrow \text{S} \{ \text{assoc} \text{ comm} \text{ idem} \text{ id:n} \}
\]

Predicate \(==\) considers these operation attributes.

- \text{assoc(iative)}: \(x + (y + z) = (x + y) + z\)
- \text{comm(utative)}: \(x + y = y + x\)
- \text{idem(potent)}: \(x + x = x\)
- \text{id:n:} \(x + n = x\)

- Constructor attribute \text{constr}:
 Unused (treated as comment) by CafeOBJ.

 \[
 \begin{align*}
 \text{op } \text{nil} : & \rightarrow \text{List}\{ \text{constr} \} \\
 \text{op } _\text{<} : & \text{List List } \rightarrow \text{List}\{ \text{constr} \}
 \end{align*}
 \]

Evaluating Terms

A tight module defines a term rewriting system.

- (Conditional) equations define (conditional) rewrite rules.
 \[\text{eq } t = t' \text{. defines } t \rightarrow t'. \]
 \[\text{eq } t = t' \text{ if } b \text{. defines } t \rightarrow t' \text{ with condition } b. \]
- Also the rewrite rules of the imported modules are included.
 \[
 \begin{align*}
 \text{Rewrite rules of module BOO}L \text{ are always included.}
 \end{align*}
 \]
- Equations must satisfy two constraints to become rewrite rules.
 1. Every variable on the righthand side of the equation (or in the condition) must occur on the left-hand side.
 2. The lefthand side must not be a single variable.

The term rewriting system is not necessarily Noetherian and confluent (i.e. reductions need not terminate, different reduction strategies may give different results).

Showing Rules

CafeOBJ> open STACK
-- opening module STACK.. done.

%STACK> show rules
-- rewrite rules in module : %STACK
1 : eq top(push(N,S)) = N
2 : eq pop(push(N,S)) = S
%STACK> show all rules
-- rewrite rules in module : %STACK
1 : eq top(push(N,S)) = N
2 : eq pop(push(N,S)) = S
%STACK> show rules
-- rewrite rules in module : %STACK
1 : eq top(push(N,S)) = N
2 : eq pop(push(N,S)) = S
3 : eq [:BDEMOD] : \text{sd}(M:Nat,N:Nat) = \#! (abs (- m n))
4 : eq [:BDEMOD] : M:Nat + N:Nat = \#! (+ m n)
5 : eq [:BDEMOD] : N:Nat * 0 = 0
6 : eq [:BDEMOD] : M:Nat quo NN:NzNat = \#! (truncate m nn)
7 : eq [:BDEMOD] : M:Nat rem NN:NzNat = \#! (rem m nn)
...

Commands show rules and show all rules.
Evaluation Strategy

CafeOBJ supports various evaluation strategies.

- **Default strategy:** when evaluating a term \(f(\ldots, a_i, \ldots) \),
 - first evaluate every \(a_i \) for which there is a rewrite rule
 \(f(\ldots, t_i, \ldots) \rightarrow \ldots \) with a non-variable term \(t_i \) in the position of \(a_i \).
 - then evaluate the whole term \(f(\ldots) \).
- **Alternative strategy** may be specified by attribute \text{strat}: (\text{ints})
 - \text{ints} is a list of integers denoting argument positions.
 - Positive number denotes eager evaluation on corresponding argument.
 - Negative (or missing) number denotes lazy evaluation on argument.
 - 0 denotes evaluation of the whole term.

\[
\begin{align*}
\text{op if_then_else_fi} & : \text{Bool} \times \text{Int} \rightarrow \text{Int} \quad \{ \text{strat}: (1, 0) \} \\
\text{op _+_} & : \text{Int} \times \text{Int} \rightarrow \text{Int} \quad \{ \text{strat}: (1, 2, 0) \} \\
\text{op cons} & : \text{Elem} \times \text{List} \rightarrow \text{List} \quad \{ \text{strat}: (0) \}
\end{align*}
\]

The chosen strategy may affect the result/termination of the evaluation.

More Advanced Features

Further features of CafeOBJ.

- **Term rewriting commands.**
 - CafeOBJ may be used for term rewriting/induction proofs (see chapters 9 and 10 of the manual).
- **Behavioral operators and behavioral equations.**
 - Modeling object methods: an operator may have a special argument describing an “object” whose state is modified by the method.
- **Transitions.**
 - **Non-symmetric relations between terms.**
- **Generalized module expressions:**
 - Modules may be renamed and combined.
 - Modules may be parameterized.
 - Parameterized modules may be instantiated.

A powerful module concept is crucial for “specifying in the large”.

Parameterized Modules

- A “loose module” is a named specification with loose semantics.
 - module* \text{ELEM} \{ \text{signature} \{ [\text{Elem}] \} \}
- May be used as the “type” of a parameter in a tight module.
 - module! \text{STACK(E :: ELEM)} \{ \\
 \text{signature} \{ \\
 \text{[Stack]} \\
 \text{push} : \text{Elem.E Stack} \rightarrow \text{Stack} \\
 \}
 \}
- The parameter may be instantiated by a matching tight module.
 - view \text{NATELEM} from \text{ELEM} to \text{NAT} \{ \text{sort Elem} \rightarrow \text{Nat} \}
 - module! \text{NATSTACK} \\
 \{ \\
 \text{-- introduces natural number stacks} \\
 \text{protecting} (\text{STACK(E <= NATELEM)}) \\
 \}

We are now going to present the theory of CafeOBJ-like specifications.