
Computer Systems

Computer Systems
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria

Wolfgang.Schreiner@risc.uni-linz.ac.at

http://www.risc.uni-linz.ac.at/people/schreine

Wolfgang Schreiner RISC

Computer Systems

Overview

How can we manage the complexity of computer systems?

• A computer can be regarded as a hierarchy of levels.
– Each level performs some well-defined function.

– Each level is implemented on top of the next lower level.

– The lowest level is the physical level (hardware).

• Each level serves as a layer of abstraction.
– Its implementation is not interesting to the upper layers.

– It hides the details of the lower layers from the upper layers.

We can understand a computer on different layers of abstraction.

Wolfgang Schreiner 1

Computer Systems

Contents

• Introduction.
– Overview and historic development.

• Computer systems organization.
– The components of a computer and their interconnection.

• The hierarchy of levels.

1. Digital logic: The implementation of computation by digital devices.

2. Microarchitecture: The structure of a computer processor.

3. Instruction set architecture: The operations provided by a computer processor.

4. Operating system: The extension of the instruction set by additional services.

5. Assembly language: The generation of executable program from textual descriptions.

Wolfgang Schreiner 2

Computer Systems

Literature

Andew S. Tanenbaum: Structured Computer Organization, 5th ed.

Wolfgang Schreiner 3

Computer Systems

Introduction

•Digital computer:
– Machine that can solve problems by carrying out instructions.

• Program:
– Sequence of instructions for performing a certain task.

•Machine language:
– Instructions that can be executed by the hardware of a computer.

Add two numbers.

Check a number to see if it is zero.

Copy a piece of data from one memory location to another.

– Primitive instructions are as simple as possible.

Machine programs are difficult and tedious for people to use.

Wolfgang Schreiner 4

Computer Systems

Programming Languages

Design a new set of instructions that is more convenient for people.

• Two different languages:
– Language L0 executed by computer.

– Language L1 used by people.

• Translation
– Replace L1 program (the source) by an equivalent L0 program (the target).

– The computer executes the generated L0 program.

• Interpretation
– Write an L0 program that takes L1 programs as inputs and executes them.

– The computer executes the L0 program (the interpreter).

Fundamental techniques of executing programs in other languages.

Wolfgang Schreiner 5

Computer Systems

Translation and Interpretation

input output

source
program

program
target

compiler program

input interpreter output

A language translator is also called a compiler.

Wolfgang Schreiner 6

Computer Systems

Virtual Machine

Avoid thinking in terms of translation or interpretation.

• Imagine virtual machine.
– Hypothetical computer M1 whose machine language is L1.

– If such a machine can be constructed, no need for machine executing L0.

• People can write programs for virtual machine.
– M1 may be built in hardware.

– L1 programs may be translated to L0 programs.

– L1 programs may be interpreted by L0 program.

We can neglect implementation of M1 when writing L1 programs.

Wolfgang Schreiner 7

Computer Systems

Language Layers

For practical implementation, L0 and L1 should not be too different.

• L1 may be a bit better than L0.
– L1 is far from ideal for most applications.

• Continue language building process.
– Invent language L2 that is a bit more people-oriented than L1.

– Implement virtual machine M2 on top of M1.

A hierarchy of language layers is constructed.

Wolfgang Schreiner 8

Computer Systems

A Multi-Level Machine

Level 0

Level 1

Level 2

Level 3

Level n

Programs in L0 can be

directly executed by

the electronic circuits

Programs in L2 are

either interpreted by

interpreters running

on M1 or M0, or are

translated to L1 or L0

Programs in Ln are

either interpreted by

interpreter running

on a lower machine, or

are translated to the

machine language of a

lower machine

Programs in L1 are

either interpreted by

an interpreter running on

M0, or are translated to L0

Virtual machine Mn, with

machine language Ln

Virtual machine M3, with

machine language L3

Virtual machine M2, with

machine language L2

Virtual machine M1, with

machine language L1

Actual computer M0, with

machine language L0

…

Wolfgang Schreiner 9

Computer Systems

Contemporary Multi-Level Machine

Level 1

Level 2

Level 3

Level 4

Level 5

Level 0

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Microarchitecture level

Partial interpretation (operating system)

Instruction set architecture level

Hardware

Digital logic level

Interpretation (microprogram) or direct execution

Wolfgang Schreiner 10

Computer Systems

Digital Logic Level

Assume: electrical engineering provides transistors.

• Interesting objects are logic gates.
– Built from transistors (analog components).

– Modeled accurately as digital devices.

•Operates on digital inputs.
– Signals representing 0 or 1.

– Computes simple function on inputs (AND, OR, . . .).

• Gates can be used to implement registers.
– Groups of 1-bit memories (e.g., 16, 32, or 64).

– Each 1-bit memory implemented by a handful of gates.

Transition from analog physics to digital computation.

Wolfgang Schreiner 11

Computer Systems

Microarchitecture Level

Assume: digital logic provides gates and registers.

• Arithmetic Logical Unit (ALU)
– Simple arithmetic operations.

– Connected to registers by a data path.

•Operation of data path may be controlled by microprogram.
– Software interpreter inside a processor.

– Microprogram is interpreter for instructions at level 2.

∗ ADD instruction: Fetch instruction, locate operands, bring them into registers, compute

sum by the ALU, write result to destination.

– Nowadays data path is more often controlled directly by hardware.

Architecture of a computer processor.

Wolfgang Schreiner 12

Computer Systems

Instruction Set Architecture Level

Assume: microarchitecture provides basic processor units.

• Set of instructions executed by processor.
– Carried out by microprogram or in hardware.

– Published by processor manufacturer in reference manual.

Machine language of a computer processor.

Wolfgang Schreiner 13

Computer Systems

Operating System Machine Level

Assume: ISA provides set of instructions.

• Extend this set of instructions by new services.
– All ISA instructions are still visible on this layer.

• New services are carried out by operating system.
– Interpreter running at level 2.

– Provides additional instructions, different memory organization, ability to run multiple pro-

grams concurrently, and other features.

Machine language extended by operating system services.

Wolfgang Schreiner 14

Computer Systems

Assembly Language Level

Assume: OS provides set of instructions and services.

• Assembly language: symbolic form of layer 3 language.
– Languages on lower levels are numeric; programs are sequences of numbers.

– Assembly language is textual; programs are sequences of readable commands.

– Assembler translates assembly program to layer 2 program.

System programmers build here services for application programmers.

Wolfgang Schreiner 15

Computer Systems

Problem-oriented Language Level

Assume: assembly language provides interface to system services.

• Problem-oriented languages are compiled to assembly language.
– Fortran, C, Modula, Ada, C++, Oberon, . . .

• Scripting/domain-specific languages are often interpreted.
– Interpreter written in assembly language or a compiled language.

– Sh, TCL, Perl, . . .

– Mathematica, Maple, Matlab, . . .

Application programmers build here services for users.

Wolfgang Schreiner 16

Computer Systems

The Programming Language Java

http://www.javasoft.com

•Developed in the beginning of the 1990’s
– Computer company Sun.

– Gained popularity with the uprise of the World Wide Web.

– “Java” is US slang for “coffee”.

• Idea: “write once, run everywhere”.
– Target code should run in same way on all machines.

• Solution: Java Virtual Machine (JVM).
– Abstraction layer between language and computer system.

– Executes the JVM byte code language.

Wolfgang Schreiner 17

Computer Systems

Execution of Java Programs

output

compiler
Java

class
file

Java
source

interpreter
JVMinput

• Java compiler generates class files.
– Object files in the JVM byte code language.

– Each Java source module is compiled to one class file.

• JVM interpreter executes class files.
– JVM dynamically links class files to executable application.

– Defines abstract processor architecture and OS.

– Completely hides real hardware and OS.

– Java only uses the JVM as its execution environment.

• Interpretation overhead.
– Byte code close to real machine code.

– Still 2–3 times slower than machine program.

JVM programs run in the same way on all architectures.

Wolfgang Schreiner 18

Computer Systems

Execution of Java Programs

• Compilation of JVM byte code to real machine code.
– Execution of machine code rather than interpretation of byte code.

– Example: GNU Java Compiler (gcj).

• “Just in Time” compilation (JIT)
– JVM interpreter dynamically compiles byte code to real machine code.

– Example: Sun’s Java “Hotspot” compiler (standard in JDK).

• Java processors.
– Processors executing JVM byte code programs.

– Several prototypes, never commercialized.

A virtual machine may be implemented by interpretation, by compila-
tion, or by actual hardware.

Wolfgang Schreiner 19

Computer Systems

Computer Architecture

The organization of a computer.

• Architecture:
– The set of data types, operations, features provided of each machine level to an user of that

level (e.g., how much memory is available).

– Implementation aspects are not part of the architecture (e.g., by what chip technology the

memory is implemented).

• Computer Architecture:
– Those parts of a computer system that are visible to a programmer.

Aspects of a computer that are of interest to a user.

Wolfgang Schreiner 20

Computer Systems

Hardware and Software

• Computer hardware:
– Tangible objects (ICs, boards, cables, power supplies, memories, . . .)

– Based on electronics, optics, magnetics, . . .

• Computer software:
– Algorithms (instructions to perform a task) in a particular computer representation (programs).

– Software can be stored on physical media (hard disk, floppy, CD-ROM, . . .).

– Essence of software is their information content, not their physical representation.

•Distinction has considerably blurred.
– Functionality implemented in hardware can be performed in software and vice versa.

– Hardware and software are logically equivalent.

“Hardware is just petrified software” (Karen Panetta Lentz).

Wolfgang Schreiner 21

Computer Systems

The Invention of Microprogramming

Originally computers had two levels only.

• 1940s: ISA and digital logic.
– ISA: all programs were written on this level.

– Digital logic: programs were executed on this level.

– Disadvantage: complicated and unreliable circuits.

• 1951: Maurice Wilkes suggested the design of a third level.
– Built-in interpreter (microprogram) to interpret ISA programs.

– Only microprogram instructions have to be executed in hardware.

– Advantage: drastic simplification of hardware.

By 1970 dominant idea in computer architecture.

Wolfgang Schreiner 22

Computer Systems

The Invention of the Operating System

Originally: a computer was operated by a single user at a time.

• Programmer reserved time on the computer.
– Put in a deck of program cards for the Fortran compiler and a a deck of program cards for

the Fortran program (two times).

– Computer generated deck of program cards for machine program.

– Programmer put generated deck (and subroutine library deck) into computer for execution.

• 1960s: operator’s job was automated by an operating system.
– Program that was kept in computer at all times.

– Control cards together with program cards and data cards were inserted.

– Operating system compiled and executed program.

•Operating systems were extended and refined.
– New instructions: system calls.

– Simultenous access from remote terminals: timesharing.

Wolfgang Schreiner 23

Computer Systems

Migration of Functionality to Microcode

Designers realized power of microcode.

• Add instructions by extending the microprogram.
– Add/modify “hardware” by programming.

• Explosion of machine instruction sets.
– Instruction sets became bigger and bigger.

– Perform tasks faster than by existing instructions.

– Example: integer multiplication/division, floating-point arithmetic, procedure call/return,

looping instructions, string instructions,

Replace instruction sequences by new machine instructions.

Wolfgang Schreiner 24

Computer Systems

The Elimination of Microprogramming

In the 1960s and 1970s, microprograms grew fat.

• CISC: Complex Instruction Set Computers.
– Microprograms tended to get slower and slower.

– Complex instructions were rarely used by compilers.

• Speed up machines by simplification:
– Eliminate microprograms.

– Reduce instruction sets.

– Have remaining instructions be directly executed by hardware.

• RISC: Reduced Instruction Set Computers.

Hardware/software boundary is arbitrary and constantly changing.

Wolfgang Schreiner 25

Computer Systems

Milestones in Computer Architecture

• Generation 0: Mechanical Computers (1642–1945)

• Generation 1: Vacuum Tubes (1945–1955)

• Generation 2: Transistores (1955–1965)

• Generation 3: Integrated Circuits (1965–1980)

• Generation 4: Very Large Scale Integration (1980–2020?)

Structured by fundamental changes in underlying technologies.

Wolfgang Schreiner 26

Computer Systems

Generation 0: Mechanical Computers

• Early pioneers

– Wilhelm Schickard (1623): mechanical (addition, subtraction, multiplication, division).

– Blaise Pascal (1642): mechanical (addition and subtraction).

– Gottfried Wilhelm von Leibnitz (1670s): mechanical (also multiplicaton and division).

• Charles Babbage: 1820s

– Difference engine: mechanical, addition and subtraction.

– Analytical machine: mechanical (never functional), controlled by punched card programs

(world’s first computer programmer: Ada Augusta Lovelace).

• Konrad Zuse: 1930s-1940s.

– Z-Series: Electromagnetic relays.

• Howard Aiken: 1940s.

– Mark I and II: electromagnetic relays.

Wolfgang Schreiner 27

Computer Systems

Schickard’s Calculator

Wolfgang Schreiner 28

Computer Systems

Generation 1: Vacuum Tubes

• Colossus: 1943, GB.
– First electronic digital computer.

– Cracking the ENIGMA cyphers (Alan Turing participated in design).

• ENIAC: 1946, US.
– Electronic computer (18,000 vacuum tubes), 20 registers with 10 digit decimal numbers.

– Computation of tables for heavy artillery.

• von Neumann Machine: John von Neumann, Princeton 1950.
– Basis of today’s architectures.

– Memory, ALU, control unit, input, output.

• 1958: first computer by IBM.

Memory

Control

unit

Arithmetic

 logic unit

Accumulator

Output

Input

Wolfgang Schreiner 29

Computer Systems

Generation 2: Transistors

The transistor was invented in 1948 at Bell Labs.

• PDP-1: Digital Equipment Corporation, 1961.
– First commercial transistorized computer (mini-computer).

– Visual display with 512 × 512 pixels.

• PDP-8: Digital Equipment Corporation, ca. 1965.
– A single bus connected components.

– 50,000 units were sold.

– Established DEC as a major player.

• The first super-computers emerged.
– Control Data Corporation (CDC).

– Seymour Cray: CDC 6600, CDC 7600, Cray-1.

CPU

Omnibus

Memory Console

terminal

Paper

tape I/O

Other

I/O

Wolfgang Schreiner 30

Computer Systems

Generation 3: Integrated Circuits

Silicon integrated circuit was invented in 1958.

•Dozens of transistors could be put on a single chip.
– Computer became smaller, faster, cheaper.

• System/360 series, IBM, 1964.
– Both scientific and commercial applications.

– Replaced two separate strands of system designs at IBM.

– First commercial computer with multiprogramming.

– First machine that could emulate other computers by microprograms.

– 32 bit computer whose memory was byte-addressed.

• PDP-11, DEC, end of 1960s.
– Highly successful, especially at universities.

Wolfgang Schreiner 31

Computer Systems

Generation 4: Very Large Scale Integration

In the 1980s, VLSI emerged.

• Tens of thousands transistors could be put on a single chip.
– Today: millions of transistors.

– Computers became even faster and cheaper.

• PC: the personal computer.
– Originally: computer kits without software.

– Xerox PARC: graphical user interfaces, windows, mouse.

– Steve Jobs, Steve Wozniak: Apple, Apple II (1970s).

– IBM PC, 1981: best-selling computer in history.

– PC clones industry emerged.

•Mid-1980s: new processor designs.
– RISC architectures, super-scalar CPUs.

Wolfgang Schreiner 32

Computer Systems

Moore’s Law

•Observation by Gordon Moore, 1965.
– Number of transistors per chip doubles approximately every two years.

– Memory sizes and processor speed increase at similar rates.

– Remarkably correct until today.

Unfortunately, there are physical limits for circuit densities.

Wolfgang Schreiner 33

Computer Systems

Example: The Intel Processor Line

Intel was founded in 1968 by Gordon Moore and Robert Noyce.

Wolfgang Schreiner 34

Computer Systems

Generation 5: ?

What will come in 2020?

• 3-dimensional circuit designs.
– Pack transistors in cubes instead of chips.

•Optical computing.
– Replace electronics by optics.

•Molecular computing.
– Use chemical/biological processes for computing.

– 4 bit computations in test tubes have been performed.

•Quantum computing.
– Use other physical properties for computing.

– Special applications only, e.g., quantum cryptography.

Wolfgang Schreiner 35

