Debian/GNU Linux Networking

Basics of the Networking

Károly Erdei

November 24, 2011

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCP
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCF
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

Range of Computer Networks

Ranges

- PAN Personal Area Networks 1-10 m, (using Bluetooth units)
- LAN Local Area Network: Room (10 m), building (100 m), campus (1000 m)
- MAN Metropolitan Area Network: City (10 km) Metronet-Hgb
- WAN Wide Area Network: Country (100 km), continent (1000 km)
- Internetwork Combination or network of networks: Planet (10K km)

LAN

- Private network within building or complex of buildings
- Connection based on cables (hosts are attached via network cards)
- Transmission speed 0.1–10 Gbps
- Various topologies: Bus-based (Ethernet), Wireless (WLAN)

Network of Networks

Internetwork:

- Connects multiple WANs/LANs across the globe
- LANs/WANs connected to Internetworks by routers or gateways
- Each attached network may have different protocol
 - Protocol = language spoken by computers on network
- Any computer in any network can communicate with any other computer in any other network independently of physical network technologies
 - Communication based on higher level protocols

The Internet

- A worldwide internetwork that uses the TCP/IP protocol suite
- It is a packet switching network (data will be splitted in packets)

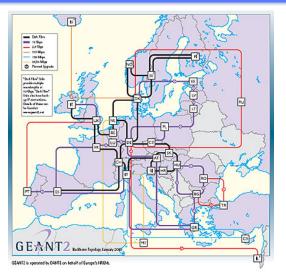
The Internet

Various groups of networks

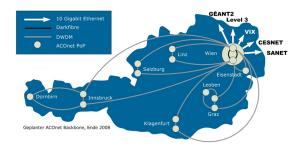
- Backbones: large networks for connecting other networks (GEANT2)
- Regional networks: e.g. connecting universities (ACOnet)
- Commercial networks: privately owned for paying users (LIWEST)

Lot of services

- Application level: World Wide Web, eMail, file transfer, remote login
- Network level: connectionless packet delivery (UDP), reliable stream transport (TCP)


Today the Internet is a collection of commercial networks

Organisation of the Internet


Internet Architecture Board (IAB)

- Internet Engineering Task Force (IETF)
 - Decisions about protocols, procedures, conventions
- Request for Comments (RFCs) http://www.ietf.org/rfc
 - Series of reports that defines the (history of) Internet protocols
- Internet Standards
 - Defines the official Internet protocols
 - References the RFCs that define a current standard
 - Update of standards: other RFCs will be referenced
- Examples of Internet Standards:
 - IP Internet Protocol: STD 5
 - TCP Transmission Control Protocol: STD 7
 - DNS Domain Name System: STD 13
 - SMTP Simple Mail Transfer Protocol: STD 10

GEANT2 - Pan-European Education/Research Network

ACOnet - Austrian Academic Computer Network

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCF
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Networks Ethernet Internet Protocols TCP DHCP Check Network Connecting PCs

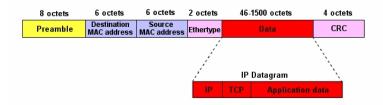
Ethernet

MAC addresses

MAC / physical / hardware Address

- each Ethernet station is given a single 48-bit unique MAC address
- is used both to specify the destination and the source of each data packet
- is six groups of two hexadecimal digits, separated by or :
 - first three octets identify the organization
 - arbitrary but unique next three octets assigned by the organisation
- is used/valid only in LAN (network segment)

technologies which use MAC address


■ Ethernet, 802.11 wireless networks, Bluetooth

Special MAC addresses:

- broadcast address: ff:ff:ff:ff:ff
 - packets sent to this address are received by all stations on the local network

Ethernet

The frame structure

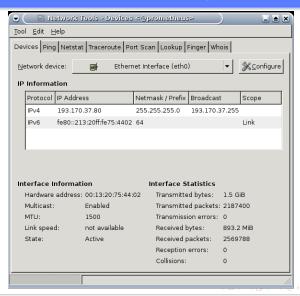
Ethernet - MAC address

How to find a local MAC addresses

Linux - command line with /sbin/ifconfig

UP BROADCAST MULTICAST MTU:1500 Metric:1

MS Windows - fastest way


■ in DOS Window by means of ipconfig /all

Linux - all units in the network segment

- arp -a (only one line listed as example):
 - crutch.risc.uni-linz.ac.at (193.170.37.76) at 00:16:35:37:5C:EC [ether] on eth0

Ethernet - MAC address

How to find a local MAC addresses - Linux with gnome-nettool

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCF
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Networks Ethernet Internet Protocols TCP DHCP Check Network Connecting PCs

Internet Protocols

Connectionless and Connection-oriented protocols

Connectionless protocol

- communication between two network point in which message can be sent without prior arrangement
- the transmitting device sending the message:
 - simply sends the message to the recipient address
- often problems with transmission
- examples: IP, UDP, ICMP, IPX

Connection-oriented protocol

- delivers a stream of data in the same order as it was sent
 - first a communication section will be established
 - data stream will be send by handshaking
 - packet retransmission by error, data lost, etc.
- examples: TCP
 - phone call: user must dial first and get answer before transmitting data

IP - The Internet Protocol

Features of IP

- A standard protocol (STD 5)
- No delivery guarantuees
 - Connection-less
 - Unreliable: packets may be lost, duplicated, reordered
 - packets oriented
- Data from an upper layer protocol is encapsulated inside one or more packets

Core functionality

- defines IP addresses und subnetting
- defines routing in the network

IP Addressing

RFC 1166: Internet Numbers

- An IP address is a 32 bit unsigned integer
 - \blacksquare There exist $2^{32}\approx 4$ billion IP addresses
- Representation in dotted decimal notation
 - \blacksquare X.X.X.X; Each X is a decimal number, a byte of the address
- Example: 128.10.2.30: 10000000 00001010 00000010 0011110

Some addresses are reserved for special purposes

- net.0: the "network" address (not a particular host) 193.170.37.0
- default gateway: an address in this network: 193.170.37.1
- broadcast address: net.255
- 0.0.0.0: "this" host
- 127.0.0.1: loopback (not sent across network, for testing local IP setup)

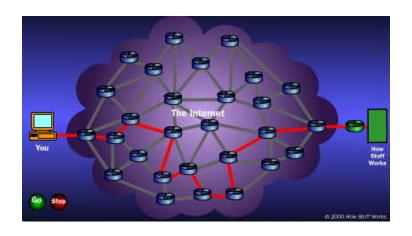
IP Datagram Structure

Version	Header Length	Type of Service	Datagram Length
ID			Offset
TTL		Upper Layer Protocol	Checksum
		Source IF	Address
		Destination	IP Address
		Opt	ions
		Da	ata

Routers and Gateways

Router: a networking device

- a computer whose software and hardware are usually tailored to the tasks of routing and forwarding packets
- transfers packets only across networks using similar protocols
- contains a specialized operating system (e.g. Cisco's IOS)
- has multiple network connections
- Types of routers
 - small units (DSL router) ISPs big multiprocessor unit


Gateway

- a networking device that converts protocols among networks
- accepts a packet formatted for one protocol (AppleTalk) and converts it to a packet formatted to another protocol (TPC/IP)
- Default gateway

Routers, packets

A route of a packet in the Internet

Private Networks - Private IP Addresses

The addresses, which can be used by everyone

Private Internet Addresses

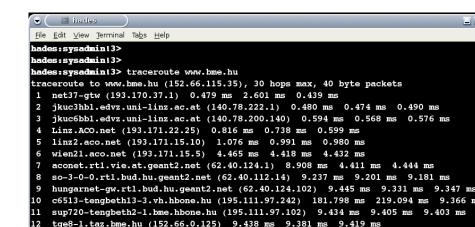
- RFC 1918: address allocation for private Internets
 - May be used internally in any organization
 - routers have to discard any packets with a private IP address in the IP header
 - gives security for private networks they are not available from the Internet

Examples

- private class A network: 10.0.0.0 10.255.255.255
 - Huge address range for communication within an organization
- Home network: 192.168.0.0 192.168.255.255
 - Cable/DSL router: 192.168.1.1

Internet Protocol - ICMP based applications Ping and Traceroute

ping


■ simplest version: ping hostname

```
PING kernel.risc.uni-linz.ac.at (193.170.37.225) 56(84) bytes of da 64 bytes from kernel.risc.uni-linz.ac.at (193.170.37.225): icmp_seq=1 ttl=245 time=25.0 ms 64 bytes from kernel.risc.uni-linz.ac.at (193.170.37.225): icmp_seq=2 ttl=245 time=26.3 ms --- kernel.risc.uni-linz.ac.at ping statistics --- 2 packets transmitted, 2 received, 0% packet loss, time 999ms rtt min/avg/max/mdev = 25.021/25.705/26.389/0.684 ms
```

traceroute

- simplest version: traceroute hostname
- try it yourself this command

Internet Protocol - ICMP based applications Traceroute

torpapa.eik.bme.hu (152.66.115.35) 9.319 ms 9.303 ms 9.294 ms

hades:sysadmin!4>

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCP
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Transport layer services

- Connection oriented
 - for data delivery first a connection must be established
- Same Order Delivery
 - data will arrive in the same order it has been sent
- Reliable data transmission
 - retransmit corrupted packages; error detection code, packet acknowledgement
- Byte orientation: not packages, but stream of byte sent
- Introducing the term port
 - port addresses multiple entities on the same location

TCP - Ports

The problem of the applications on a host to communicate

- more programs run on a computer
 - sendmail, webserver, name server, ftp-, pop server, etc.
- the computer has one unique IP address
- how to deal with the application, how to differ them
- introducing ports is the solution
 - analogy: postal address as IP address; appartement number or name is the port number

Ports

- to each services in the Internet/Computer a port is assigned
 - ports are identified by the port number
 - see in Linux the /etc/services file for numbers/services allocation
 - port number is a part of TCP packets header
- a program implement a service
 - the program LISTEN on the port for a communication

TCP - Ports

Jnix port in /etc/services

ftp-data	20/tcp		
ftp	21/tcp		
ssh	22/tcp		# SSH Remote Login Prot
telnet	23/tcp		
smtp	25/tcp	mail	
whois	43/tcp	nicname	
domain	53/tcp		# name-domain server
domain	53/udp		
finger	79/tcp		
WWW	80/tcp	http	# WorldWideWeb HTTP
WWW	80/udp		# HyperText Transfer Pr
pop3	110/tcp	pop-3	# POP version 3
imap2	143/tcp	imap	# Interim Mail Access F
https	443/tcp		# http protocol over TI
https	443/udp		
ftps	990/tcp		
telnets	992/tcp		# Telnet over SSL
imaps	993/tcp		# IMAP over SSL
pop3s	995/tcp		#POP-3 over SSL oce

Example: Sending email per smtp port (1)

```
hu: "> telnet bullfinch 25
Trying 193.170.37.222...
Connected to bullfinch.risc.uni-linz.ac.at.
Escape character is '^]'.
220 bullfinch.risc.uni-linz.ac.at ESMTP Sendmail 8.13.8/8.13.8/Debian-3
Mon, 3 Nov 2008 15:19:26 +0100; (No UCE/UBE) logging access from: i
uhu37.risc.uni-linz.ac.at(OK)-ke@uhu37.risc.uni-linz.ac.at [193.170.37.
helo ich-bin-s
250 bullfinch.risc.uni-linz.ac.at Hello ke@uhu37.risc.uni-linz.ac.at
[193.170.37.115], pleased to meet you
mail from: k.erdei@risc.uni-linz.ac.at
250 2.1.0 k.erdei@risc.uni-linz.ac.at... Sender ok
rcpt to: karoly.erdei@jku.at
250 2.1.5 karoly.erdei@jku.at... Recipient ok
```

Example: Sending email per smtp port (2)

Connection closed by foreign host.

```
data
354 Enter mail, end with "." on a line by itself
this is an email sent by telnet 25 command from the laptop to the mail
server bullfinch.risc... demonstrating how smtp works
.
250 2.0.0 mA3EJQr4014077 Message accepted for delivery
quit
```

221 2.0.0 bullfinch.risc.uni-linz.ac.at closing connection

uhu:~>

Example: Downloading file from the WWW server

Telnet to port 80 on the Web server

hades:www!11> telnet www 80
Trying 193.170.37.138...
Connected to crow.risc.uni-linz.ac.at.
Escape character is '^]'.
GET http://www/proba.txt

Hello! This is a test file. To get it per port access with telnet. It succeeded to get this file per port access from the web server. Great!

Connection closed by foreign host. hades:www!12>

TCP Datagram Structure

Source Port	Destination Port			
Sequence Number				
Acknowledgement Number				
Flags	Receiver Window Size			
Checksum	Urgent Data			
O	ptions			
Data				

Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCF
- 5 DHCP
- 6 Check Network
- **7** Connecting PCs

DHCP - Dynamic Host Control Protocol

Client - Server application

DHCP Client - Server communication flow

- DHCP is used to obtain parameters necessary for IP networking
- client: broadcasts a DHCPDISCOVER request
 - Asks for a DHCP server on the network segment
 - Asks for a lease and for an IP address
 - Lease: the length of time for the allocation is valid
- server: sends a DHCPOFFER message
 - Checks if the MAC of client is registered
 - Marks an IP from the spool
- client: broadcasts a DHCPREQUEST on the network
 - The IP of the server is in the packet
- server: sends the client the data
 - Reservers the IP for the time of the lease
 - Other servers delete the mark for the IP

DHCP - Dynamic Host Control Protocol

DHCP server

- has a pool of IP addresses
- manages other network parameters for networking by client
 - options are widely configurable
- checks the MAC of the client, if configured
- lease time is configurable (max;min)

Client requests periodically

- Client has to request again before lease time is over
 - a new IP or request the same IP
- By booting must suspend other processes
 - without IP no network connection

DHCP server is implemented in Home/DSL/Cable routers

DHCP - Dynamic Host Control Protocol DHCP Server data table

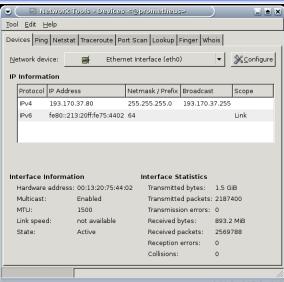
Assigned data by DHCP server at RISC

- Network configurations parameter at RISC
 - IP Address
 - Lease
 - Domain Name (risc.uni-linz.ac.at)
 - Default Gateway address (193.170.38.1)
 - Name server IP address (193.170.37.225)
 - Name server IP address (193.170.37.224)
 - WINS servers (phoebe.risc.uni-linz.ac.at)
 - WINS servers (samba-dc1.risc.uni-linz.ac.at)
 - NTP servers (time.risc.uni-linz.ac.at)
 - SMTP server (mail.risc.uni-linz.ac.at)
 - POP server (pop.risc.uni-linz.ac.at)

NAT - Network Address Translation

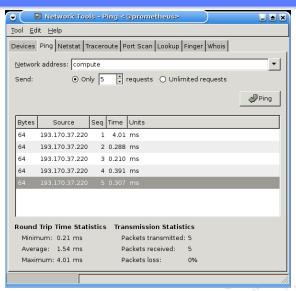
How NAT works

- general definition
 - a technique that hides an entire address space, usually consisting of private network addresses (RFC 1918), behind a single IP address in another, (often) public address space.
- implemented in a router connected to private/public network
 - uses translation tables to map/remap the addresses
 - translation table are created by the outgoing requests
 - rewrites the outgoing IP packets as sent from the router
 - Assigns to each connection a different source port
- NAT introduces complications in communication, performance
 - it has to rewrite checksum, reassemble packets, fragment them again, etc.
- The NAT box the Internet router
 - Cable/DSL router: a firewall is always integrated

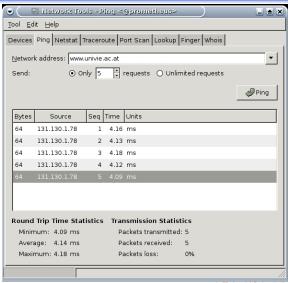


Agenda

- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCF
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

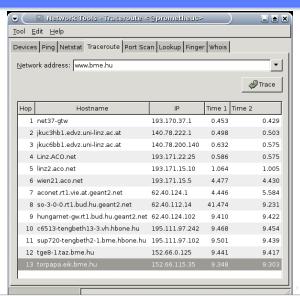

Checking Network Connections

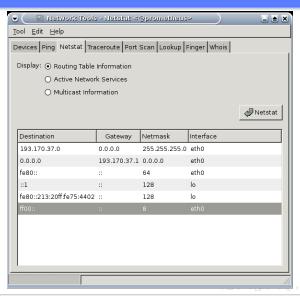
gnome-nettool, devices


Checking Network Connections

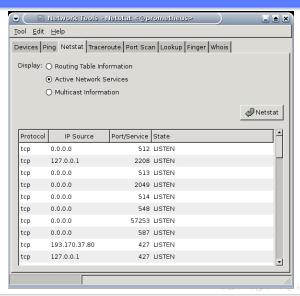
gnome-nettool, ping, LAN

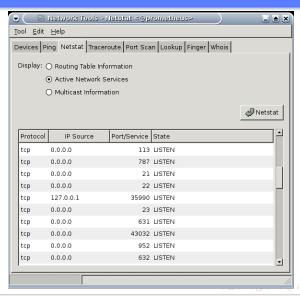
Checking Network Connections

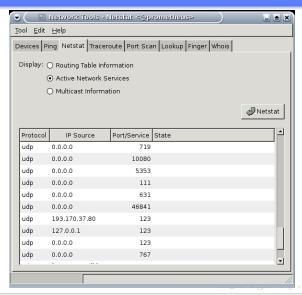

gnome-nettool, ping, remote


Networks Ethernet Internet Protocols TCP DHCP Check Network Connecting PCs

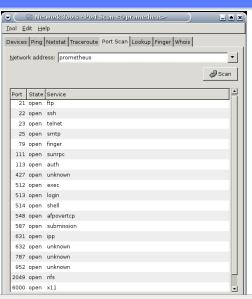
Checking Network Connections


gnome-nettool, traceroute


Network Connections - Routing


Network Connections - Active Services

Network Connections - Active Services



Network Connections - Active Services

Network Connections - portscan

gnome-nettool, local

Network Connections- portscan

gnome-nettool, remote

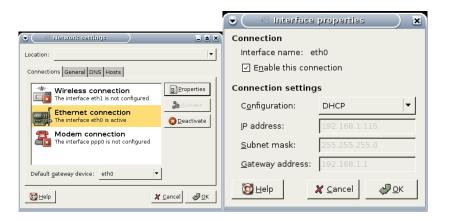
		itwork Tools - Port Scan <@prometheus>	LAX
Devices Ping Netstat Traceroute Port Scan Lookup Finger Whois			
Network address: www.bme.hu			Scan
Port	State	Service	
21	open	ftp	
22	open	ssh	
25	open	smtp	
80	open	www	
110	open	pop3	
443	open	https	
3306	open	mysql	

Agenda

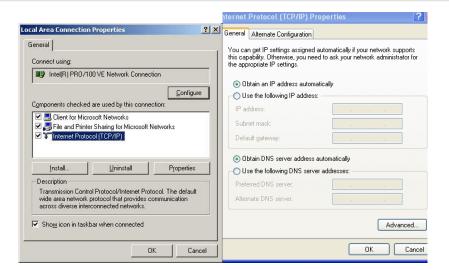
- 1 Networks
- 2 Ethernet
- 3 Internet Protocols
- 4 TCF
- 5 DHCP
- 6 Check Network
- 7 Connecting PCs

Connecting Computers to the Network

Connecting automatically by DHCP

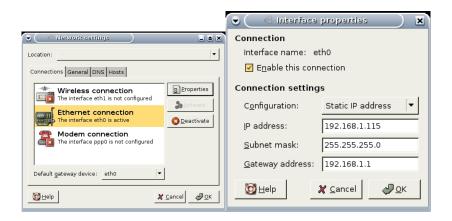

- the most confortable solution
 - if DHCP server is available for the domain, for the LAN segment
 - if the DHCP server is not restricted to known hosts
 - the hardware address (MAC address) of ethernet/wireless interface needed for access

Connecting manually with fixed IP address


- this solution always works (local help (IP) needed)
- needs more knowledge about the OS, configuration files, etc.
- the only possibility if no DCHP server available

Connecting Computers to the Network Using DHCP

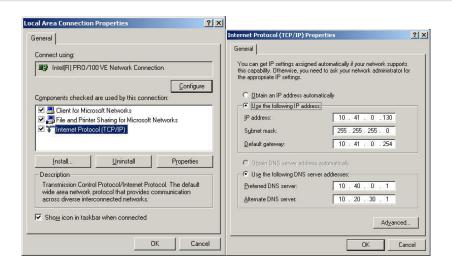
Linux Configuration with network-admin - root access necessary



Connecting Computers to the Network by DHCP for MS Windows

Connecting Computers to the Network Using fixed IP addresses

Linux Configuration with network-admin


Connecting Computers to the Network

The Name Server

Configuration in Linux with network-admin

Connecting Computers to the Network by static IP for MS Windows

End of Network Basics

Thanks for your attention!