
Ralph-Johan Back

Invariant Based Programming Revisited

TUCS Technical Report
No 661, January 2005

Invariant Based Programming Revisited

Ralph-Johan Back

TUCS Technical Report

No 661, January 2005

Abstract

Program verification is usually done by adding specifications and invariants to the pro-
gram and then proving that the verification conditions are all true. This makes program
verification an alternative to or a complement to testing. We study here an another ap-
proach to program construction, which we refer to asinvariant based programming,
where we start by formulating the specifications and the internal loop invariants for
the program, before we write the program code itself. The correctness of the code is
then easy to check at the same time as one is constructing it. In this approach, program
verification becomes a complement to coding rather than to testing. The purpose is to
produce programs and software that are correct by construction. We present a new kind
of diagrams,nested invariant diagrams,where program specifications and invariants
(rather than the control) provide the main organizing structure. Invariants are described
as sets and program code as transitions between the sets. Nesting of invariants provide
an extension hierarchy that allows us to express the invariants in a very compact man-
ner. We study the feasibility of formulating specifications and loop invariants before
the code itself has been written in a number of case studies. We propose that a sys-
tematic use of figures, in combination with a rough idea of the intended behavior of
the algorithm, makes it rather straightforward to formulate the invariants needed in the
program. We discuss the correctness criteria for invariant based programs. Finally, we
provide a complementary textual representation of invariant based programs which we
refer to assituation analysis.This format is is roughly equivalent to nested invariant
diagrams, but is better suited for carrying out proofs of the verification conditions .

Keywords: programming methodology, invariant based programming, program veri-
fication, state charts,verification conditions, program correctness

TUCS Laboratory
Software Construction Laboratory

Requirement analyzis

Implementation

Testing

Debugging

Design

Documentation

Figure 1: The programming process

1 Introduction

Program construction proceeds through a sequence of rather well-established steps:
Requirement analysis(understand the problem domain and the specification of the
problem), design(work out an overall structure for the program),implementation
(code the program in some chosen programming language),testing(check that the
program works as intended),debugging(correct the errors that testing has revealed),
anddocumentation(provide a report on the program that was developed, for users,
for maintenance and for later extensions and modifications). Figure 1 illustrates the
programming process and the feedback loops in it. This is the traditional design-
implement-test-debug cycle.

Testing alone does not establish the correctness of program, as is well known. Cor-
rectness requires a precise mathematical specification of what the program is intended
to do, and a mathematical proof that the implementation satisfies the specification.
This kind of software verification is both difficult and time consuming, and is presently
not considered cost effective in larger software projects. A verification step would not
replace testing, because most programs are not correct to start with, and need to be
debugged before one can even attempt to verify them. In the programming process
above, verification would be a step after debugging and before documentation.

Let us look at the verification of a simple program in more detail. The steps in-
volved in verification would be:

1. provide the pre- and postconditions for the program,

2. provide the necessary loop invariants for the program,

3. compute the verification conditions for the program, and

4. prove that each verification condition is indeed true.

Each of these tasks can be quite difficult. The formulation of pre- and postconditions
requires that we have some formal or semi-formal theory of the problem domain. It
can also be difficult to identify all the conditions implied by the informal problem

1

statement. The loop invariants must be inferred from the code, and they are often quite
difficult to formulate and to make complete enough so that the verification conditions
can be proved. Computing verification conditions is very tedious by hand, but this step
can be easily automated. Finally, proving that the verification conditions are correct
can sometimes be difficult, but for most parts it is quite straightforward. The verifi-
cation conditions usually consist of a large number (maybe 70- 80%) of rather trivial
lemmas that anautomatic theorem provercan verify (provided it has a good under-
standing of the domain theory). The rest of the lemmas are more difficult, and have
to be proved by hand or by a theorem prover with a little bit of help and guidance (an
interactive theorem prover).

This a posterioriverification of software is known to be cumbersome. An alter-
native approach propagated by Dijkstra is therefore to construct the program and the
correctness proof hand in hand, which he referred to as aconstructiveapproach to ver-
ification [5]. In other words, the verification is done in the coding step rather than after
the testing step. This means that each subunit of the program is specified before it is
coded, and it is checked for correctness immediately after it has been written. Writing
pre- and postconditions for the program explicitly, as well as loop invariants, is a con-
siderably help in understanding the program and avoids a large number of errors from
being introduced in the first place. Combined withstepwise refinement, this approach
allows the reliable construction of quite large programs.

In this paper, we will propose an even earlier place for program verification, im-
mediately following the requirement analysis and in the design phase. This means
that not only pre- and postconditions but also loop invariants (and class invariants in
object-oriented systems) are written before the code itself is written, as a continuation
of the design. This will require that the invariants are expressed in the framework and
language of the design phase (figures, formulas, texts and diagrams), rather than in the
framework and language of the coding phase (a programming language).

We will refer to this approach asinvariant based programming. This is not a new
idea, similar ideas have been proposed earlier in the end of the 70s, by a number
of authors, like John Reynolds [11], Martin van Emden [12], Eric Hehner [10], and
myself [1, 2, 3], in different forms and variations. Dijkstra’s other work also points
in this direction [7], he emphasizes the formulation of a loop invariant as a central
step in deriving the program code. Basic for all these approaches is that the loop
invariants are formulated before the program code. John Reynolds also considered a
visual formalism that makes it easier to describe invariant properties of arrays. Figure
2 illustrates the differences in work flow between these three approaches.

The idea that program code should be enhanced with program invariants is a re-
peating theme in software engineering. It becomes particularly pressing to include
program invariants when we want to provide mechanized support for program veri-
fication. The idea that the program invariants should be formulated before the code
itself is written has not, however, received much attention.

Reynolds original approach was to consider a program as a transition diagram,
where the invariants were the nodes and program statements were transitions between
the nodes. Invariants are seen as program labels, and the transitions between invariants
are done with gotos. Reynolds starts by formulating the invariants hand in hand with
the transitions between the invariants. The need to formulate invariants early on also
highlights the problem of describing the invariants in an intuitive way. For this purpose,

2

Constructive proofs Invariant based programmingA posteriori proof

Loop invariants

Pre/postconditions

Program code

Loop invariants

Verification conditions

Pre/postconditions

Loop invariants

Program code

Verification

Program code

Pre/postconditions

Verification conditions

Figure 2: Three different approaches to verification

Reynolds proposes a visual way of describing properties of arrays. Both these ideas
served as inspiration for my own early work on this same topic. Van Emden considered
programming as just a way of writing verification conditions. His approach is quite
similar to the one that we took in describing situation analysis. My own early work was
independent of van Emden’s work, but heavily influenced by Reynolds’ and Dijkstra’s
work.

Hehner’s approach is again very similar to situation analysis, but comes with a
different interpretation. He describes imperative programs using tail recursion. This
means that he is calling parameterless recursive procedures rather than jumping to
labels. Semantically , he is working with input-output specifications (relations) rather
than with invariants (predicates). This approach nicely supports stepwise refinement
in a non-structured programming language, but the basic paradigm for constructing
programs is different from invariant based programming.

I hope to show in this paper that, by a collection of proper enhancements to these
early ideas of invariant based programming, it is possible to construct correct programs
with approximately the same amount of work that we today spend on programs that are
just tested. The main new enhancement of these early ideas is the use of nested invari-
ant diagrams as a visual tool for describing the structure of invariant based programs.
We also consider the methodological questions here in more detail, in particular how
to find and express the invariants before the code has been written.

The rest of the paper is as follows. We start by showing how to construct a very
simple program invariants first, in the next section. In Section 3, we show how to
describe invariant based programs usingnested invariant diagrams. These are essen-
tially state transition diagrams where the states denote invariants and the transitions
denote executable program statements. The main new idea here is to use nesting to
structure the collection of invariants in a program. Section 4 provides a little bit of
background theory for the approach and considers the issue of correctness of invariant
based programs. In Section 5 we provide a first example of how to construct invariant
based programs, and comment on the issues involved in this process. Section 6 gives
two other examples of constructing an invariant based program. Section 7 shows how
to combine stepwise refinement with invariant based programs using a small example.
The purpose here is to avoid too much nesting of invariants by proper identification
of subprograms. In Section 8 we provide an alternative textual description of invari-
ant based programs calledsituation analysis(revised from [1, 2] to take nesting into

3

account). We conclude with some general observations and a summary.

2 Constructing a very simple summation program

Let us start by considering a very simple task: sum the integers from 0 ton. We assume
that the attributesn andsumare given, and the task is to setsum= 0+ 1+ · · ·+ n.
We need to build an algorithm that achieves this goal, knowing that initiallyn≥ 0
holds. We assume that the only allowed program operations are addition and testing
for equality. (If we permitted multiplication and division, then we could solve the
problem using the well-known formula1+2+ · · ·+n = n(n+1)/2).

Constructing the program Before we can formulate an invariant for this program,
we need to have a rough idea of how the algorithm is intended to work. Here we
will take a very simple approach: we let a new attributek iteratively take the values
0,1, . . . ,n, each time adding the new value ofk to sum. Initially we setsumto 0.

We think of the invariant as anintermediate repeated situationduring program
execution. This situation can be reached directly from the initial situation, and we can
return to it while at the same time making progress, until we have reached our final
situation (final goal). In this case the invariant is thatsumcontains the sum computed
thus far, i.e., that

sum= 0+1+ · · ·+k∧0≤ k≤ n

The initial situation is that
n≥ 0

and the final situation that we want to establish is that

sum= 0+1+0+ · · ·+n

Once we have decided on the initial and final situation and the invariant, we can start
creating the program code. We can achieve the intermediate situation from the initial
situation with the statement

sum,k := 0,0

This is easily checked:

wp.(sum,k := 0,0).(sum= 0+1+ · · ·+k∧0≤ k≤ n)

≡ 0 = 0+1+ · · ·+0∧0≤ 0≤ n

≡ T ∧0≤ n

⇐ n≥ 0

The invariant establishes the final situation when

k = n

This is also easily checked:

sum= 0+1+ · · ·+k∧0≤ k≤ n∧k = n

4

⇒sum= 0+1+ · · ·+n

Finally, we need to show that we can make progress towards the final goal while pre-
serving the invariant. The way we make progress is to increasek by one (so that we
get closer ton) and at the some time adjustingsumso that the invariant is still satisfied
after this increase. The adjustment needed is to increasesumwith the new value of
k. Thus, the following statement will take us one step closer ton while preserving the
invariant:

k := k+1;sum:= sum+k

This alternative is taken ifk 6= n.
We check that this is indeed the case. First we check that the invariant is preserved

by this code:

wp.(k := k+1;sum:= sum+k).(sum= 0+1+ · · ·+k∧0≤ k≤ n)

≡ wp.(k := k+1).(sum+k = 0+1+ · · ·+k∧0≤ k≤ n)

≡ sum+k+1 = 0+1+ · · ·+k+1∧0≤ k+1≤ n

≡ sum= 0+1+ · · ·+k∧−1≤ k≤ n−1

⇐ sum= 0+1+ · · ·+k∧0≤ k≤ n∧k 6= n

We need to show that some quantity (atermination function) is decreased by each
iteration, yet cannot decrease for ever. We choosen− k as the termination function.
First we check thatn− k is bounded from below. In this case, we can show that
0≤ n−k always holds when the invariant holds:

sum= 0+1+ · · ·+k∧0≤ k≤ n

⇒ 0≤ n−k .

The termination function is indeed decreased when we return to the invariant state:

wp.(k := k+1;sum:= sum+k).(n−k < n−k0)

≡ n− (k+1) < n−k0

≡ k+1 > k0

⇐ sum= 0+1+ · · ·+k∧0≤ k≤ n∧k = k0

We have now derived the little program in Algorithm 1 for doing the summation:

Algorithm 1 Summation program with gotos

ComputeSum:: sum,k := 0,0; gotoIncreaseSum

IncreaseSum:: if n = k then gotoReady

elsek := k+1; sum:= sum+k; gotoIncreaseSum

Ready::

The summation program expressed with a while loop is shown in Algorithm 2.

5

Algorithm 2 Summation program with while loop

ComputeSum:

sum,k := 0,0;

while n 6= k do

k := k+1;

sum:= sum+k

od

Inventing the invariant The crucial step in constructing the program was to identify
the invariant. We can describe the invariant graphically, as shown in Figure 3.

1 2 3 4 5

1

2

3

4

5

6

n

k

k=/=n

sum

10

7
k:=k+1; sum:= sum + k

Figure 3: Summing program

The graph shows the location of all integer valued pairs(k,sum) that satisfies the
requirementsum= 1+ 2+ ·+ k∧0≤ k≤ n. We refer to the collection of all states
that satisfy this condition as asituation. The initial statementk,s := 0,0 puts the state
in this situation, because0+1+ · · ·+0 = 0. The exit conditionk = n in this situation
establishes the required result,s = ∑n

i=0i. Finally, the statementk := k+ 1;s := s+
k preserve the situation (leads back to the invariant situation) while decreasing the
termination functionn−k. The arrow in the figure shows that ifk 6= n, then the update
k := k+1;s := s+k will keep the state in the same situation.

The approach to constructing an invariant based program can be summarized as
follows:

Analyze requirements: Formulate the initial situation and the final situation pre-
cisely.

Formulate intermediate situations: Introduce some intermediate situations, and ex-
press these precisely

6

Provide program code: Show how to move between the situations by program state-
ments.

Check the code: Show that each program statement establishes the destination invari-
ant whenever the source invariant holds.

Termination: Show that some termination function is bounded in an invariant and is
decreased before re-entering the invariant.

This leaves us with the question of how identify and formulate the intermediate situ-
ations. For this, we must have a rough idea of the way the algorithm is supposed to
work. We can gain this understanding by drawing figures that illustrates the basic data
structures involved and how they will be changed during execution of the algorithm.
We can also hand simulate the execution of the algorithm with concrete data. From
the figures and hand simulation, we can then try to identify recurring situations and
intermediate goals, and express these generally.

When checking the code, it is a good policy to start by checking the simplest
conditions firsts, or the conditions most doubtful to hold, in order to find errors as
early as possible. Usually we needs to make adjustments and additions in the situation
and/or the program statements before they pass all the tests.

3 Invariants first programming

Invariant based programming is dual to the more traditional approach where one starts
by first constructing the program code. With the code in hand, one tries to identify the
loop invariants. Once the loop invariants have been identified, then the procedure is
the same as above. The difference is thus which comes first, program statements or the
invariants.

With the traditional approach, it is very important that the thing that one is con-
structing, the program code, is kept as simple and intuitive as possible. The program-
mer has to have a good understanding of how the code works, as this is what he is
inventing and modifying until he gets it right. This is the motivation for thestructured
programmingprinciple [6], which emphasize single-entry-single-exit control struc-
tures. The intention is to keep the code simple and disciplined, so that it is easy to
build, understand, extend and modify.

When one tries to make the program code as simple as possible, there is a danger
that the invariants become more complicated. This is because the invariant has to fit the
code, and there is no guarantee that simple code leads to simple invariants. When we
are programming invariants first, then we should focus on the structure of the invariants
rather than the structure of the code. The purpose is to express the invariants so that
they are as simple as possible to build, understand, extend and modify. We will look
at this issue next.

Consider again the summation program. Figure 4 describes the program that we
constructed above for the summation.

Figure 5 is the same program, but we have emphasized the situations (invariants)
by writing them out explicitly .

We see that a termination function is needed here, to show that the computation
does not loop forever.

7

k=n

k,s:=0,0

k=/=n
k:=k+1; s:=s+k

Figure 4: Simple flowchart

k=n

k=/=n

n, sum : integer

k: integer

k,s:=0,0

0 <= k <= n

k:=k+1; s:=s+k

n>=0

n>=0

sum=0+1+2+...+k

sum=0+1+2+...+n

Figure 5: Flow chart and invariants

The third version in Figure 6 is equivalent to the first one, but now we have deem-
phasized progrma statements further, writing them as just annotations on the arrows
between the situations.

n, sum : integer

k: integer

k,s:=0,0

0 <= k <= n

k:=k+1:s:=s+k

n>=0

n>=0
sum=0+1+2+...+k

sum=0+1+2+...+n

[k=/=n]

[k=n]

Figure 6: Invariant diagram

We write both the condition for traversing an arrow (theguard)and the effect of

8

traversing the arrow (theupdate statement) on the arrow.
We are looking for a way to impose some structure on the situations. Basically, a

situation describes a set of states (the set of states that satisfies the condition for the
situation). The typical thing that we do with a situation is that we strengthen it by
adding new constraints. This means that we identify a subset of the original situation,
where the new constraints are also satisfied. Thinking of situations as sets of states, we
can use Venn diagrams to describe this strengthening of situations. The diagram can
then be expressed equivalently as in Figure 7.

n−k>=0
k,sum:=0,0

k = n

k: integer
0 <= k <= n

n,sum: integer n >= 0

k:=k+1; sum:= sum+k sum=0+1+2+...+k
[k=n][k=/= n]

Figure 7: Nested invariant diagram

This is the same diagram as above, except that we have nested the situations to
show the strengthening. We have also omitted conditions that are implicit because of
nesting. For instance,n≥ 0 is written only once in the outermost situation, but it will
hold in all nested situations. The statement arrows between the situations are the same
as before.

The situations are expressed more concisely with nesting. The diagram also shows
more clearly how the different situations are related. We will refer to diagrams of this
kind asnested invariant diagrams.

We also need a way to indicate the termination function. Here we write the ter-
mination function inside the box in the right upper corner of the invariant. It shows
thatn−k≥ 0 must hold in the indicated situation, and that the functionn−k must be
decreased before re-entering this situation.

Note that this description of the flow chart is equivalent to all the previous ones,
the difference is just in the presentation. This presentation emphasizes the structure of
situations rather than the structure of code.

Nested invariant diagrams are similar tostate charts[9, 8]. Both are essentially
extensions of state transition diagrams. However, the interpretation and intended use
is different. State charts are intended to specify the control flow in reactive systems,
without any concern for correctness, whereas invariant diagrams specifically address
the correctness issue of algorithms. A state chart is usually seen as describing some
specific aspect of a larger software system, i.e., it is a form of abstraction, whereas
invariant diagrams describe the whole program. State charts can probably be extended
with invariant annotations and would then be quite close to invariant diagrams. The
semantics of state charts would then need to be adapted to correctness reasoning. Here
we have chosen the simpler approach, and defined the semantics of invariant dia-
grams directly. The formalism can be extended with features from state charts that
are deemed useful (like product states, and signals/procedure calls), but we have here
tried to concentrate on the bare essentials.

9

4 Invariants and attributes

Before proceeding with slighly more demanding examples of how to construct invari-
ant based programs, we need to be more precise about the semantics and correctness of
invariant based programs. We base the presentation below on the refinement calculus
approach, as described in [4].

Attributes, expressions and assignments We assume that we have an infinite col-
lection ofattributes(program variables). These are essentially observations of prop-
erties of an underlying state which we assume cannot be observed directly. Each at-
tribute is uniquely identified by its name (an identifier). The set of all possible states
is denotedΣ, while individual states inΣ are denoted byσ,σ1, etc.

We will assume here that all attributes range over the same set of valuesV. In
other words, our attributes are untyped. The value of attributex is given by thevalue
operationvalx: valx.σ ∈ V is the value of attributex in stateσ. The attributex can
be set by thesetoperationsetx: setx.v.σ ∈ Σ is the new state that we reach when we
set the value of attributex to valuev. The value and set operations satisfy some basic
assumptions that are expressed by a collection of axioms (see [4] for details). An
example assumption is

valy.(setx.v.σ) = valy.σ

whenx 6= y. This formalizes the assumption that setting a new value for attributex
does not change the value of a different attributey.

The value of an expression likex+y+1 is determined by the value of the attributes
in the expression:

val.(x+y+1).σ ≡ valx.σ+valy.σ+1

The assignment statement maps states into states. It can be defined using value and set
operations as

(x := e).σ ≡ setx.(val.e).σ

Situations A situation is a boolean formula that may contain free occurrences of
attributes. A situation is identified with the set of states that satisfies it. For instance,
the situation

x≤ y∧z≥ 0

identifies the set
{σ ∈ Σ |val.x.σ≤ val.y.σ∧val.z.≥ 0}

This situation does not constrain attributes different fromx,y,z in any way. The fact
that we can consider situations as either constraints or sets allows us to use either the
language of logic or the language of set theory to express situations and requirements
on situations. For instance,P⊆ Q andP⇒ Q express the same thing, that any state
that satisfiesP must also satisfyQ. In the latter formulation, there is an implicit quan-
tification over all states, i.e.,P⇒Q really stands for(∀σ ∈ Σ ·P⇒Q))

We treat typing of attributes as constraints on their values. Thus,x : Nat (or x ∈
Nat) denotes the set of states

{σ ∈ Σ |valx.σ ∈ Nat}

10

The situations are sets and can hence be described by Venn-diagrams. Nesting
of two situations is shown as nesting of the corresponding set outlines. However,
the analogy with Venn diagrams is not complete, because we will not associate any
meaning to two situations being drawn as disjoint set outlines. In Venn diagrams, this
means that they have a nonempty intersection, but we cannot make this interpretation.
Consider as an example two situations,A≡ x≥ 0 andB≡ y≥ 0. We draw these two
situations as disjoint sets, because they have no constraints in common. However,A =
{σ|valx.σ≥ 0} andB = {σ|valy.σ≥ 0}, soA∩B = {σ|valx.σ≥ 0∧valy.σ≥ 0} 6= /0.
This means that these two situations do in fact overlap, as there are states that belong
to both situations.

Transitions A transition is a sequence of arrows that start from one situation and
end in the same or another situation. Each arrow can be labelled with

• anassume (or guard) statement[b], whereb is a boolean condition

• anassert statement{b}, whereb is a boolean condition,

• an assignment statementx := e, wherex is an attribute (or a list of attributes)
ande is an expression (or a list of expressions of the same length asx).

An assume statement[b] tells us that we may assume thatb holds at the indicated place
in the transition. An assert statement{b} tells us that we have to show thatb holds
at the indicated place in the transition. If this is not the case, then the transition will
fail to reach the target situation. An assignment statement changes the values of the
attributes in the usual way.

Consider a transition fromP to Q,

P :
S1−→ S2−→ . . .

Sn−→ Q

ThestatementS of this transition is the sequential composition of the statements
that label the successive arrows,S= S1;S2; . . . ;Sn. We say that the statementS goes
fromP to Q, if S is the statement of a transition fromP to Q.

There may be many transitions that start from the same situationP. Transitions
with the same initial statements can be combined into a tree-like structure, to simplify
the presentation as well as the logic of the transition.

A collection of (possibly nested) situations together with transitions between the
situations is referred to as anested invariant diagram. An initial situation is one that
does not have any actions entering it. Afinal situationis one that does not have any
actions leaving it. In general, we may have one or more initial and final situations in a
diagram, corresponding to different starting assumptions and different final goals that
we have set for our program.1

1We consider here for simplicity a very simple language for transitions, only using assume, assert and
assignment statements. In principle, we can use any refinement calculus statement for a transition. We
will consider this generalization in a later paper.

11

Execution Execution of a statement may eithersucceed (miraculously), failor ter-
minate normally.Executing a statement[b] terminates normally without changing the
stateσ if b.σ = T, but succeedsotherwise. A statement{b} has the same behavior
whenb.σ = T, but fails otherwise. The assignment statement changes the values of
the attributes in the usual way and terminates normally.

A sequential composition of statementsS= S1; . . . ;Sn will fail for an initial state,
if some statement in the sequence fails and all previous statements have terminated
normally. Similarly,S will succeed miraculously if some statement in the sequence
succeeds miraculously, and all previous statements have terminated normally. If nei-
ther of these two conditions hold for an initial state, thenSwill terminate normally for
that initial state.

Consider a situationP in the diagram. Assume that the stateσ satisfiesP. Exe-
cution will fail at P if there is at least one transition fromP that fails. Execution will
terminate atP if all transitions fromP succeed. Otherwise, there must be at least one
transition fromP to someQ that terminates normally. We then say that execution from
P proceeds normallyto Q. We say that executionproceeds normally fromP if execu-
tion does not fail atP and there is a transition that proceeds normally fromP to some
Q.

A diagram is is executed by starting from some situation in some specific initial
stateσ0. If execution fails at the situation, then we are done, and the whole execution
fails. If execution succeeds at the situation, then we are also done, and the whole
execution terminates. Otherwise, we pick nondeterministically one of the transitions
that terminates normally from the situation, and execute the statement of that transition.
Then we repeat the execution with the target situation and with the state with which
we reached the target situation, and so on. In this way, execution will either continue
forever, or it will eventually terminate at some situation, or it will eventually fail at
some situation.

We do not assume that execution has to start from an initial situation, it is possible
to start from any situation in the diagram. Also, execution does not have to terminate
at a final situation, termination can occur at any situation. However, execution must
terminate if it reaches a final situation (there are no outgoing transitions from a final
situation, so all transitions from this situation succeed).

Correctness Theweakest preconditionof a statementS to establish a conditionQ is
denotedwp.S.Q. We define inductively

wp.[b].Q = b⇒Q

wp.{b}.Q = b∧Q

wp.(x := e).Q = Q[x := e]
wp.(S1;S2).Q = wp.S1.(S2.Q)

Here we consider the situations as logical constraints. In set theoretic notation, we
would write the weakest precondition for the assume statement as¬b∪Q and the
weakest precondition for the assert statement asb∩Q.

The invariant diagram isconsistentif

P⇒ wp.S.Q

12

hold for any situationsP andQ in the diagram and for any transition fromP to Q ,
whereS is the statement of this transition.

We say that an execution islegal when its initial state satisfies the situation in
which the execution is started.

Consistency guarantees that any situation reached during a legal execution will
be satisfied by the state of the execution when that situation is reached. Consistency
also guarantees that a legal execution cannot fail. However, consistency does allow an
execution to never terminate.

The invariant diagramterminatesif there are no legal infinite execution in the
diagram. We prove this by showing that for each cycle of transitions in the diagram, at
least one situation in the cycle has atermination function. The integer expressiont is
a termination function for situationP, if

• P⇒ t ≥ 0 , i.e., the value oft is bounded from below in any state that satisfies
P,

• the value oft is never increased in the diagram, and

• the value oft has been decreased each timeP is re-entered in the execution.

This shows that execution of every loop in the diagram must eventually terminate, and
hence that there are no infinite legal executions.

Consistency and termination together shows that there are no failures during exe-
cution, and that every loop terminates. However, this does not exclude the possibility
that execution will terminate at an interior situation. This happens if all transitions that
lead out of that situation terminate successfully. Hence, any situation is a potential fi-
nal state. If we want to exclude this possibility, then we need to additionally prove that
the diagram islive, in the sense that each non-final situation has at least one transition
that terminates normally.

Consistency, termination and liveness together implies that any legal execution of
the diagram will eventually terminate in a final situation with a final state that satisfies
the final situation.

We way that an invariant based program iscorrect if it is consistent, terminating
and live.

Invariant based programs vs ordinary programs There is a difference in philos-
ophy between ordinary programs and invariant based programs, in particular concern-
ing the notion of correctness. The correctness notion for invariant based programs is
stronger than the traditional notion. The traditional notion of correctness states that if
a program is started in an initial state that satisfies the precondition of the program,
then the program must terminate in a final state that satisfies the postcondition of the
program.

For an invariant based program, this requirement is strengthened, because any sit-
uation can be an initial state. In particular, this means that we require that correctness
also holds for states in interior situations that cannot even be reached by a legal execu-
tion from an initial situation.

The correctness of an invariant based program is also stronger in that it is not suf-
ficient that the final situations are satisfied upon termination, but all interior situations
must also be satisfied during execution.

13

One could argue that the correctness requirement for invariant based programs is
too strong, that the traditional program correctness notion should be enough. However,
as soon as a program has at least one loop, an inductive argument is needed for the
correctness proof. If this argument takes the form of a proof with invariant assertions,
one will in fact end up establishing the correctness of the program as an invariant based
program. In other words, the usual proof technique establishes a stronger correctness
property for a program than what is required by the traditional notion of correctness.

The advantage of invariant based programs is that one can reason about them in
a local fashion. One only needs to consider each situation at a time, together with
the situations that can be reached from this situation with simple transitions. Only
the decrease of termination functions requires an overall view of the program, because
one needs to check that each possible cycle in the diagram decreases some termination
function. This also means that one can change and fix the invariant based program in
a local fashion. This locality of reasoning is the payoff of using the stronger notion
of correctness that we propose here for invariant based programs (and which we get
anyway with traditional proof techniques).

Programming methodology The execution model of an invariant based program is
quite general, as we allow for failure, (miraculous) success, infinite execution and nor-
mal termination. The minimum requirement for an invariant based program is that it
is consistent. The program does not have to terminatie or be live. Liveness may not
hold because we have not (yet) covered all possible cases for some internal situation,
i.e., there are cases for which we still need to provide transitions. However, the pro-
gram constructed thus far is consistent (although incomplete). Similarly, we may have
a consistent program, but we have yet to tackle the termination of the program, which
may require some redefinition of some invariants.

We see program construction as a sequence of successive refinements, where each
refinement preserves the consistency of the previous version. A refinement can in-
volve adding some new situations (initial situation, intermediate situations or final
situations), or it can involve adding some new transitions to a situation, to increase
liveness of the program. A refinement may also modify or remove some transitions
or situations, as long as the consistency of all transitions is preserved. A refinement
may also change the program so that termination is established for some cycle in the
diagram. Consistency is thus preserved throughout program construction, while ter-
mination and liveness are properties that may be increased or decreased in successive
versions of the program, depending on what are the requirements for the final program.

This approach requires that we carefully check the consistency of each transition
when it is introduced. Leaving the consistency checks to a later stage in program devel-
opment will only accumulate errors in the program and make the consistency checking
very laborious. It will also decrease the motivation for carrying out consistency checks
at all, because too many interdependent things then need to be considered and changed.
Consistency checks can be done at different levels of rigour, but a good rule of thumb
is to use the same rigour as one would use for checking a normal mathematical lemma.

14

5 A simple sorting program

As our first more demanding example, we consider the simplest possible sorting pro-
gram, insertion sort. Essentially, we sort the array by moving a cursor from left to right
in the array. At each stage we find the smallest element to the right of the cursor, and
exchange this element with the cursor element. After this, we advance the cursor, until
we have traversed the whole array.

We assume thatSorted(A, i, j) means that the array elements are non-decreasing
in the (closed) interval[i, j], thatPartitioned(A, i) means that every element in array
A below indexi is smaller or equal to any element inA at index i or higher, and
thatPermutation(A,A0) means that the elements in arrayA form a permutation of the
elements in arrayA0.

Let us first identify the initial situation and the required final situation. These are
shown in Figure 8.

1 n

Sorted

Permutation(A,A0)

1 n

Permutation(A,A0)

sort the array

A

A

Figure 8: Sorting algorithm specification

We thus assume that

n : int ∧A : array1 : n o f int∧n≥ 1∧Permutation(A,A0)

holds initially. The final situation requires that in addition

Sorted(A,A0)

holds.
The next step is to identify an intermediate situation. The most plausible one is

that in the intermediate situation, part of the array has been already sorted, and that
none of the remaining elements are smaller than any of the elements in the sorted part.
This is illustrated in Figure 9.

15

1 n

Sorted

Permutation(A,A0)

1 n

1 ni

Sorted

i:=1

Permutation(A,A0)

Permutation(A,A0) Partitioned(A,i)

swap smallest remaining element with A[i];
i:=i+1

[i=/=n] [i=n]

Figure 9: Sorting with invariant

The intermediate situation can be characterized by adding the following conditions
to the initial situation

i : int ∧1≤ i ≤ n∧Sorted(A,1, i−1)∧Partitioned(A, i)

It is quite easy to check that the initial assignmenti := 1 will establish this intermediate
situation. It is also easy to check that the conditioni = n will imply the final situation.
Hence, the only thing that remains is to figure out how to make progress towards this
condition while maintaining the intermediate situation.

Finding the smallest remaining element indicates that we need to scan over all the
remaining elements, so we obviously need a loop here also. We add a fourth situation,
where part of the unsorted elements have already been scanned for the least element.
The new situation is shown in Figure 10.

The new situation is characterized by the additional constraints

k, j : int ∧ i ≤ k≤ j ≤ n∧A[k] = min{A[h]|i ≤ h≤ j}

We check that this situation is established from the previous intermediate situation by
the assignmentj,k := i, i wheni 6= n. We also check that ifj = n, then

A[i],A[k] := A[k],A[i]; i := i +1

will establish the first intermediate situation, as indicated in the diagram.
Finally, we need to check that the second invariant is preserved while making

progress. We need to show that whenj 6= n, the statement

j := j +1;i f A[j] < A[k] thenk:= j f i

preserves the second invariant. This is also easily checked. The inner loop will even-
tually terminate becausen− j is decreased but is bounded from below. The outer loop
will terminate becausen− i is decreased and is bounded from below.

16

1 n

1 ni

Sorted

min(A,i,j)

1 ni

Sorted

k j

1 n

Sorted

i:=1

Permutation(A,A0)

Partitioned(i)

Permutation(A,A0)

Partitioned(i)Permutation(A,A0)

Permutation(A,A0)

[j=/=n]

[i=/=n]

[j=n]

A[i],A[k]:=A[k],A[i];
i:=i+1

j,k:=i,i

[i=n]

j:= j+1

[A[j]<A[k]]
k:= j

[A[j]>=A[k]]

Figure 10: Sorting program with two invariants

This concludes our derivation of the sorting algorithm. Figure 11 shows the invari-
ant diagram for the final program that we have derived.

The outermost situation gives the background assumptions for the algorithm. The
nested situation is what holds when we have sorted the array up toi−1, but have not yet
started to scan for the smallest element in the rest of the array. The innermost situation
holds while we are scanning for the least element. The second nested situation is the
final situation. We could also have nested the final situation inside the first invariant.
However, that would have indicated that we also had some information about the value
of i at exit. As this is not needed, we prefer to keep this invariant just nested inside the
initial situation.

To illustrate the difference between traditional programming and invariant based
programming, we show the flow diagram that corresponds to the above invariant dia-
gram in Figure 12. We can see from this how the situations /invariants become invisible
when we concentrate on the statements that need to be executed and the control flow
between the statements.

Figure 13 provides a slightly different description of the same solution, with five
different situations rather than four as above. The most complicated transition, when
i is updated, is shown here using its own situation. We give this solution to illustrate
the point that situations are not only useful when constructing loops, but are generally
useful when taking stock of the different cases that can arise during the execution of
an algorithm.

17

n−i

n−j

i: integer 1<=i<=n & Sorted(A,1,i−1)
i:=1

A. array 1..n of integer Permutation(A,A0) & 1<=n

&Partitioned(A,i)

Sorted(A,1,n)

[i=n]

[i=/=n] j,k:= i,i

[j=/=n]

[j=n]

j,k: integer A[k]=min(A,i,j)
 i<n & i<=k<=j<=n

j:=j+1;

[A[j]<A[k]]; k:=j

[A[j]>=A[k]]

A[i],A[k]:=A[k],A[i];
i:=i+1

Figure 11: Invariant diagram for sorting program

A[i],A[k]:=A[k],A[i];
i:=i+1

j,k:=i,i

i=/=n

i:=1

j=/=n

j=n

i=n

j:=j+1;
if A[j]<A[k] then k:=j

Figure 12: Flow chart for sorting

Sorted

Sorted

Sorted

Sorted

j:=j+1;

Permutation(A,A0)

i:=1

1 n

1 i n

1 i k j n

1 i k n j

1 n

Permutation(A,A0)min(A,i,j)Partitioned(i)

Partitioned(i) min(A,i,j) Permutation(A,A0)

Permutation(A,A0)Partitioned(i)

Permutation(A,A0)

[j=/=n] [j=n]

i:=i+1
A[i],A[k]:=A[k],A[i];

[i=n]
if A[j]<A[k] then k:=j

if i=/=n then j,k:= i,i

Figure 13: Alternative invariants for sorting program

18

We used figures quite extensively in the derivation of the invariant diagram. The
figures allow us to read out the logical formulation of the invariants in a rather straight-
forward way. Most of the design of the algorithm is done using the figures. The in-
variant diagrams are, however, more suitable when one is checking that the invariants
are preserved by the transitions, and are also more compact because of the nesting.

Any programmer who is solving this problem will (or at least should) draw the
kind of figures shown above, to get a feeling for how the program should behave. In
invariant based programming, these figures are preserved as the invariants. In ordinary
programming, they are usually lost in subsequent steps (some figures may be included
in the final documentation, but usually become outdated by later changes in code or
during maintenance). By elevating these figures to a more distinguished position in
program construction, we are more likely to preserve them and keep them up to date.
For instance, if we want to change an invariant, we would probably first want to check
the corresponding figure, to see how the change affects the overall situation, before we
update the invariant. Only after the invariant has been updated would we change the
transitions between the invariants, and check that the invariants are still preserved by
the modified transitions.

6 Arranging elements in an array

We consider next two different versions of the same problem: arranging elements in an
array. The first problem is to partition an array into two parts, the second one considers
how to partition the array into three parts.

Partitioning an array with a value We consider the following problem. We are
given an array ofn integers, and an integerx. The problem is to rearrange the elements
in the array so that all the elements less than or equal tox come first.

The solution idea is to keep two indexes in the array,i and j, such that all elements
below i are less than or equal tox, and all elements abovej are greater thanx. One
inspectsA[i]. If this element is smaller than or equal tox, then one can just increasei.
If the element is greater thanx, then one can in stead swap it with the element atj , and
then decreasej instead. The problem here is to get all the index manipulations correct,
so that termination happens at the right moment, and one avoids off-by-one errors.

The solution idea, expressed in terms of the domain structures, is described in
Figure 14. Here blue elements are smaller than or equal tox, and red elements are
larger thanx. The invariant diagram in Figure 15 describes the exact solution.

19

Permutation(A,A0)
0 n−1

0 n−1i

Permutation(A,A0)
0 n−1i j

check A[i], and swap with element A[j] if necessary;
either increase i or decrease j

Permutation(A,A0)

Figure 14: Swapping program invariants

n>=0 & A:array 0..n−1 of integer & x:integer

i,j:=0,n−1
0<=i & j<=n−1&i<=j+1

A[0..i−1]<=x & x<A[j+1..n−1]

A[i]<=x−−>i:=i+1

A[i]>x−−>
A[i],A[j]:=A[j],A[i];
j:=j−1

[i=j+1][i=/=j+1]

j−i>= −1

A[0..i−1]<=x & x<A[i..n−1]

Figure 15: Invariant diagram for swapping program

Note that we have to prove both that each transition leads to the indicated situation
and that the termination function is decreased whenever we return to the situation. In
this case, the termination function isj− i. We also need to check that the termination
function is bounded from below. This follows from the invariant here, becausei ≤
j +1⇒ j− i ≥−1.

Dutch national flag This problem is a variant of the previous problem. Arrange balls
in an array so that the blue balls are first, then the white and last the read balls. The
solution is similar to the previous one, except that we need to keep track of three in-
dexes in stead of just two. Figure 16 shows the invariants involved. The corresponding
invariant diagram is shown in Figure 17.

20

w=/=r+1
0 n−1

w=r+1

0 b w r n−1

0 n−1

Figure 16: Dutch national flag

w=r+1

A[w]=blue−−>swap(A,b,w);w,b:=w+1,b+1

A[w]=white−−>;w:=w+1

A[w]=red−−>swap(A,r,w);r:=r−1

0<=b<=w & w−1<=r<=n−1
A[0..b−1]=blue & A[b..w−1]=white & A[r+1..n−1]=red

r−w+1

n>=0 & A:array 0..n−1 of {blue,white,red}

b,w,r:=0,0,n−1

[w=/=r+1] [w=r+1]

Figure 17: Diagram for Dutch national flag

7 Stepwise refinement of an algorithm

The previous problems have all been solved by finding the invariants first, and then
connecting these with statements. When the programming problem gets more compli-
cated, then this is not sufficient. We need to introduce subprograms (procedures) in
order to decompose the problem into smaller, more manageable parts. This is usually
known asstepwise refinementof an algorithm.

We show how to derive a simple array program that finds a specific element in the
array. The array is assumed to be sorted row-wise, and the element is assumed to be in
the array. We will here use a very simple (and inefficient) strategy: we scan the rows
first, to find the row where the array is, and then we scan this row for the element we
are looking for.

Solution outline The intended structure of the program is shown in Figure 18. The
essential idea is here that we decompose the invariant diagram into two sub-diagrams,
FindRowandFindCol. We show that the problem can be solved with the help of these.

21

ArraySorted

ElementExists

FindRow

FindCol

RowFound

ColFound

Figure 18: Outline for sorting program

We then construct these two sub-diagrams in separate steps. The diagram that we
are looking for is described in Figure 19.

ArraySorted
ElementExists

FindRow

FindCol

RowFound

ColFound

Figure 19: Sorting program invariant diagram

In situationRowFoundwe have found the right row. In situationColFoundwe
have also found the right column.

First, we need to define what we may assume at the start.

• RowSorted(i)≡ (∀ j ∈ [1,n) ·a[i, j]≤ a[i, j +1])

• ArraySorted≡ (∀i ∈ [1,m] ·RowSorted(i))∧ (∀i ∈ [1,m) ·a[i,n]≤ a[i +1,1])

• ElementExists≡ (∃i ∈ [1,m], j ∈ [1,n] ·a[i, j] = x)

Then we need to define what we want to achieve:

• RowFound≡ 1≤ i ≤m∧a[i,1]≤ x∧ (i = m∨x < a[i +1,1])

• ColFound≡ RowFound∧1≤ j ≤ n∧a[i, j]≤ x∧ (j = n∨x < a[i, j +1])

HereColFoundis the goal that was to be achieved by the program.

22

Implementing FindCol The diagram in Figure 20 is an implementation ofFindCol.

m−i

i:=i+1

a:array 1..m,1..n of integer 1<=m 1<=n
m,n:integer, x; integer

i:=1

ArraySorted ElementExists

i: integer Invariant1

[exit][not exit]
RowFound

Figure 20: FindCol diagram

Here we define
Invariant1≡ 1≤ i ≤m∧a[i,1]≤ x

and
exit≡ i = m∨x < a[i +1,1]

It is quite straightforward to check that all the required conditions are satisfied, and
that this implementation ofFindCol really does lead us from the initial condition to
theRowFoundsituation.

FindCol Next, we implementFindCol, in the way shown in Figure 21.

m−i

n−j

j:=j+1

j: integer

2

j:=1

i: integer

ElementExists
ArraySorted

1<=n1<=ma:array 1..m,1..n of integer
m,n:integer, x; integer

Invariant2

ColFound

RowFound

Invariant1

[exit][not exit2]

Figure 21: Implementation of ColFound

Note that we have to retain the outer situation descriptions, because we need to
know what to assume inside the new situations. The definitions used in this diagram
are

Invariant2≡ RowFound∧1≤ j ≤ n∧a[i, j]≤ x

and
exit2≡ (j = n∨x < a[i, j +1])

This shows that the following program solves the given problem:

i := 1;

23

do i 6= m∧x≥ a[i +1,1]→ i := i +1od;

j := 1;

do j 6= n∧x≥ a[i, j +1]→ i := i +1od

The whole program, expressed in terms of invariants first, is shown in Figure 22.

m−i

n−j

i:=i+1

j:=j+1

a:array 1..m,1..n of integer 1<=m 1<=n ArraySorted ElementExists
m,n:integer, x; integer

i: integer

j: integer
j:=1

i:=1

ColFound

2[exit][not exit2]

Invariant2

RowFound

[exit][not exit]

Invariant1

Figure 22: Whole sorting program diagram

Let us finally consider how to describe this algorithm in terms of the domain in
which the algorithm is working. This is shown in Figure 23. This shows the subsequent
narrowing of the search space. Each indicated area essentially says that the elementx
is somewhere in this area. Note that the sets are included in each other.

1

m

1 nj

i:=1

i

i:=i+1

[not exit1]

[exit1]

j:=j+1
[notexit2]

[exit2]

Figure 23: Invariants of sorting program

8 Situation analysis

The invariant diagrams provide a rather simple way of describing the overall structure
of the program. However, it is difficult to write out proofs for the transitions in this
notation. Therefore, we will provide another format, a textual one that we refer to
assituation analysis, which can be seen as a complement to the diagram. Situation

24

analysis emphasises the proofs of the verification conditions and is equivalent to a
proof of the correctness of the invariant based program.

The textual representation is essentially a list of situations. Each situation is given
a name and a short informal explanation. For each situation, we give the conditions
associated with that situation, indented one step to the right. For each situation, we also
give the transitions that lead out from this situation. We refer to each transition as a
case. Each case is also indented one step to the right, and can have a descriptive name,
if needed. For each case, we provide the statements that are carried out, terminated
with a clause that expresses the target situation. We could have written heregoto
“target situation”, but we write insteadcheck“target situation”, to emphasize that the
checking of the verification condition is the essential point here.

Invariant based programs as proofs We have two different ways of writing the
statements that lead from one invariant to the next. The first approach is to go all
the way with the “program as a proof” correspondence, and write the tests as just
additional conditions, and write the assignmentsx := e in the formx′ = e. In other
words, we introduce new (primed, double primed etc.) attributes for each assignment.
This allows us to look at an assignment statement as condition also. Then a statement
will just amount to a collection of assumptions that lead up to a check-statement. There
is an implicit statement likek,sum:= k′,sum′ before returning to an invariant. This
can be optimized away in code generation. Algorithm 3 shows the simple summation
program in text format:

We also need to include definitions in context, as shown later. These definitions
may assume the facts in the path leading up to the definition itself (including other
definitions). This allows for flexible mixing of special cases facts and definitions (e.g.
piecewise definitions).

The indentation attempts to be systematic and meaningful: an invariant has all its
constituents indented one step. The constituents of an invariant are :

• the definitions needed to express the invariant,

• the properties that hold in the invariant,

• the transitions from the invariant (the cases), and

• the invariants that are nested inside this invariant.

Loop termination requires an extra proof obligation (need to reduce termination func-
tion before returning). Loop termination also requires that boundedness of the ter-
mination function follows from the invariant. Both of these conditions are shown in
Figure 3 as additionalcheckconditions. We can also have other “check” clauses, e.g.
before a conditional statement to check that some alternative is enabled, and before
basic operations to check that the operation is defined in the present state.

Proofs are written at the endpoints of the outline, and can be hidden when they are
not needed. Assumptions that can be in a proof are all situated at the path that leads
from the root to thecheckclause expressing the proof obligation. Algorithm 4 shows
the same summation algorithm, but now the proof are written out.

Note that the proofs are written as structured derivations. In this case, the proof are
carried out by hand. In practice, doing all the proofs by hand is tedious, and in may

25

Algorithm 3 The summation program
Initial : the initial situation

n : integer

n≥ 0

case initialize:

k′,sum′ = 0,0

checkAdding(k′,sum′)

Adding: we have computed the sum up tok

k,sum: integer

sum= 1+2+ · · ·+k

0≤ k≤ n

check n−k≥ 0

case exit:

k = n

checkFinal

case loop:

k 6= n

k′ = k+1

sum′ = sum+k′

checkAdding(k′,sum′)
checkn−k′ < n−k

Final: (the whole sum has been computed)

n = k

cases also frustrating, because a large fraction of the lemmas to be proved are rather
trivial. I better approach is to build computer support for this approach, where we try
to automate the proof. A mechanical proof checker should typically be able to prove
60 - 80% of the lemmas automatically.

If we were using a mechanical proof checker, then the system could automatically
analyze the program, and insert at the endpoints (after the check clauses) only those
lemmas that it has not been able to prove. The intended effect would be that the
system continuously analyzes the program being built and works as acritic for the
programmer. It lists those lemmas that it cannot itself see that are correct, and asks
the programmer to verify these. The programmer then either verifies these by hand, or
uses an interactive proof checker.

If we are unable to prove that a check is true, then there is an error in the program.
Remember that the notion of a program error is stronger than usual here. It is an error
if the program does not preserve all invariants. It is thus possible that the program
actually works correctly in the sense that the right output is always produced for any
legal input. If the invariants are violated, then the program is still incorrect in the sense

26

that it does not work as intended. The remedy is to either change the program so that
it works as intended (by modifying the transitions), or change the way we intend the
program to work (modify the invariants). Or then change both, in order to achieve
consistency.

The above derivation shows the correctness proof of the algorithm. Stripping the
program of all extra material, we get the following go to program (Algorithm 5):

Algorithm 5 The summation program
Initial : k,s := 0,0; Adding

Adding: if k = n thenFinal elsek := k+1;s := s+k; Adding

Final:

Refinement calculus formulation of invariant based programs The second ap-
proach to expressing statements is to write assume, assert and the assignment state-
ments in the situation analysis as is done in the invariant diagrams. A case collects
together some transitions that lead from one situation to another (or back to the situa-
tion).

Consider a case of a transition fromP to Q with a statementS. The consistency
requirement is thatP⊆ wp.S.Q. This is again equivalent to

wp.([P];S;{Q}) = true

If we use the refinement calculus convention that a statementSreally stands forwp.S,
then we can consider each case as the proof obligation

[P];S;{Q}= true

The advantage of this view is that we can use different methods to establish the equal-
ity. We can move the postcondition backwards (as an assert statement) and we can
move the precondition forwards (as an assume statement), without changing the truth
of the case condition. In particular, we can move the precondition all the way back
to immediately follow the precondition, in which case we just have an implication to
prove. Similarly, we can move the precondition all the way forward to the postcondi-
tion and again only have an implication to prove.

The following is an example of verifying a check statement by propagating the
assertions backwards. The caseInitial : Adding: case2 can be written equivalently as
in Algorithm 6. This shows that the loop case is in fact true.

27

Algorithm 6 Case analysis
caseloop:

k 6= n

k := k+1

sum:= sum+k

checkAdding

• [Initial]; [Adding]; [k 6= n]; k := k+1;sum:= sum+k; {Adding}
= [Initial]; [Adding]; [k 6= n]; {sum+ k+ 1 = 1+2+ · · ·+k+ 1∧

0≤ k+1≤ n}
= Initial ∧Adding∧k 6= n⇒ sum+k+1= 1+2+ · · ·+k+1∧0≤

k+1≤ n

= Initial ∧Adding∧k 6= n⇒ sum= 1+2+ · · ·+k∧0≤ k < n

= { Adding⇒ sum= 1+2+ · · ·+k∧0≤ k≤ n }

true.

Situation analysis of the array search algorithm. Algorithm 7 shows another ex-
ample, the array search algorithm in textual form. In this case, we also have some
definitions that are used to express the invariants in the program.

Tools for situation analysis An outlining editor has the ability to collapse the sub-
headings that are not interesting for the present analysis. By using an outlining editor
for building and analysing invariant based programs, we can concentrate on one check
at a time. All the assumptions needed to verify that the check is true are on the path
that leads from the root of the outline to the check. Hence, if the check is visible, then
all assumptions for the check must also be visible. All other branches in the outline
can be kept closed, in order to not distract from the proof task at hand. In this way,
an outlining editor provides a simple way of keeping track of the proof obligations. It
also allows the proof itself to be hidden, when one wants to look at the overall program
structure but is not concerned with the consistency proofs of the individual transitions.

Advantages of situation analysis An important advantage of the situation analysis
is that it combines in one representation a number of different things:

1. It shows a program that when executed achieves the stated goals

2. It shows the proof of the correctness of the program, together with the verifica-
tion conditions that need to be established.

3. The proof is isomorphic with the program structure.

4. It shows the structure, and scoping of the program variables that are needed in
the program

28

5. It shows the structure and nesting of the program invariants and intermediate
conditions that are needed in the program.

9 Conclusions

We have in this paper argued for a different approach to constructing simple algo-
rithms, where we start by constructing the preconditions, postconditions and interme-
diate invariants of the program (called situations) before writing any code. The pro-
gram code is then constructed in the form of transitions that allow us to move from one
situation to another, and checking that the invariants are preserved by these transitions.
This allows us to construct a program and its correctness proof at the same time, in a
sequence of successive consistency preserving enhancements to the program. We have
argued that the careful use of figures makes it quite straightforward to find the right in-
variants for the program, once a basic understanding of how the algorithm should work
is at hand. We have provided a diagrammatic notation (invariant diagrams) that pro-
vides an intuitive way of describing invariant based programs, and have shown how
to structure a program using nested invariants in this way. We have also provided a
textual form for invariant based programs (situation analysis). This thus gives us three
different ways of representing the same invariant based program: figures, invariant
diagrams and situation analysis. Each of these have their use. Figures and the transi-
tions between figures are very useful in the initial stages of the construction, when we
are trying to work out the intermediate situations or invariants. The invariant diagram
provides a concise and compact overview of the whole program, and shows the basic
structure of the program. The situation analysis is to be preferred when we carry out
the proofs of the consistency of the invariant based program. Invariant diagrams and
situation analysis are more or less isomorphic descriptions of the same thing, and it is
easy to see that one can be derived from the other.

We have also given a collection of examples showing how to derive invariant based
programs. We have on purpose restricted ourselves to a rather simple application do-
main, array manipulation, because it is a familiar area and the notation for expressing
properties of arrays are familiar. We are presently also working with a different ap-
plication area, the construction of pointer algorithms, where the algorithms are more
complex and the problems with expressing the invariants are more sever.

We have on purpose restricted ourselves here to the construction of simple algo-
rithms. However, this approach does scale up quite well to more complicated soft-
ware constructs, such as procedures, classes, software components and concurrent
processes. We are presently working on extensions of the approach in these direc-
tions.

Another direction of research that we are currently pursuing is tool support for in-
variant based programming. We have already built an outlining editor that allows us to
carry out situation analysis in a rather straightforward fashion. We have connected this
editor to a automatic simplifier and to an interactive proof checker, in order to prove the
verification conditions automatically. The initial experiences have been encouraging,
and we hope to be able to report on this in the very near future.

29

References

[1] Ralph-Johan Back. Program construction by situation analysis. Research Re-
port 6, Computing Centre, University of Helsinki, Helsinki, Finland, 1978.

[2] Ralph-Johan Back. Exception handling with multi-exit statements. In H. J. Hoff-
mann, editor,6th Fachtagung Programmiersprachen und Programmentwicklun-
gen, volume 25 of Informatik Fachberichte, pages 71–82, Darmstadt, 1980.
Springer-Verlag.

[3] Ralph-Johan Back. Invariant based programs and their correctness. In W. Bier-
mann, G Guiho, and Y Kodratoff, editors,Automatic Program Construction
Techniques, number 223-242. MacMillan Publishing Company, 1983.

[4] Ralph-Johan Back and Joakim von Wright.Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998. Graduate Texts in Computer Science.

[5] E. W. Dijkstra. A constructive approach to the problem of program correctness.
BIT, 8:174 – 186, 1968.

[6] E. W. Dijkstra. Notes on structured programming. In Ole-Johan Dahl, C.A.R
Hoare, and E.W Dijkstra, editors,Structured Programming. Academic Press,
New York, 1972.

[7] E. W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

[8] Martin Fowler.UML Distilled. Addison Wesley, 1999.

[9] D. Harel. State charts: a visual formalism for complex systems.Science of
Computer Programming, 8:231–274, 1987.

[10] E. Hehner. Do considered od: a contribution to the programming calculus.Acta
Informatica, 11:287 – 304, 1979.

[11] J. C. Reynolds. Programming with transition diagrams. In D. Gries, editor,
Programming Methodology. Springer Verlag, Berlin, 1978.

[12] M. H. van Emden. Programming with verification conditions.IEEE Transactions
on Software Engineering, SE-5, 1979.

30

Algorithm 4 Summation program with proof
Initial : the initial situation

n : integer

n≥ 0

case initialize:

k′,sum′ = 0,0

checkAdding(k′,sum′)

• 0,0 : integer

• 0 = 1+2+ . . .+0

• 0≤ 0≤ n

Adding: we have computed the sum up tok

k,sum: integer

sum= 1+2+ · · ·+k

0≤ k≤ n

check n−k≥ 0

case exit:

k = n

checkFinal

• k = n

case loop:

k 6= n

k′ = k+1

sum′ = sum+k′

checkAdding(k′,sum′)
• k′,sum′ : integer

≡ k+1,sum+k+1 : integer

≡ true

• sum′ = 1+2+ . . .+k+k+1

≡ sum+k+1 = 1+2+ . . .+k+k+1

≡ sum= 1+2+ . . .+k

≡ true

• 0≤ k′ ≤ n

≡ 0≤ k+1≤ n

≡ true

checkn−k′ < n−k

• n− (k+1)
= n−k−1

< n−k

Final: (the whole sum has been computed)

n = k 31

Algorithm 7 Array search program
defineRowSorted(a,n, i) ≡ (∀ j ∈ [1,n) ·a[i, j]≤ a[i, j +1])

define ArraySorted(a,m,n)≡ (∀i ∈ [1,m] ·RowSorted(i))∧(∀i ∈ [1,m) ·a[i,n]≤ a[i +1,1])

define ElementExists(a,m,n,x) ≡ (∃i ∈ [1,m], j ∈ [1,n] ·a[i, j] = x)

Initial : (assumptions at start of program)

a : array[1..m,1..n]o f integer

m,n,x : integer;

ArraySorted(a,m,n)

ElementExists(a,m,n,x)

1≤m∧1≤ n

case i = 1;

checkInvariant1

Invariant1 : (looking for the right row)

i : integer

1≤ i ≤m

a[i,1]≤ x

check m− i ≥ 0

case found right row

i = m∨x < a[i +1,1]
checkRowFound

case row not found

i 6= m∧x≥ a[i +1,1]
i′ = i +1

checkInvariant1(i′)
checkm− i′ < m− i

RowFound: (we have the right row)

i = m∨x < a[i +1,1]:
case j = 1

checkInvariant2

Invariant2 : (looking for the right column)

j : integer

1≤ j ≤ n

a[i, j]≤ x

check n− j ≥ 0

case (found right column)

j = n∨x < a[i, j +1]
checkColFound

case (not yet right column)

j 6= n∧x≥ a[i, j +1]
j ′ = j +1

checkInvariant2(j ′)
checkn− j ′ < n− j

ColFound: (found the right column)

j = n∨x < a[i, j +1]32

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN ISBN 952-12-1496-1
ISSN 1239-1891

