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Introduction
Karoly.Bosa@jku.at

• GPUs were originally hardware blocks optimized for a small set of graphics 

operations.

• For speed up graphics related computation, the (very efficient) data 

parallelism was introduced on the GPUs.

• As it was demanded, GPUs became gradually more programmable for 

general purposes.

• In late 2006, NVIDIA introduced its CUDA architecture and tools to make 

data parallel computing on a GPU more straightforward.

• CUDA (an acronym for Compute Unified Device Architecture) is a 

parallel computing architecture developed by NVIDIA.
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GPU Hardware
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� A GPU is connected to a host through a high speed IO bus slot (typically a 

PCI-Express).

� The GPU has its own device memory, up to several gigabytes.

� Data is usually transferred between the GPU and host memories using 

programmed DMA.

� DMA can operate concurrently with both the host and GPU compute units � DMA can operate concurrently with both the host and GPU compute units 

(support for direct access to host memory from the GPU under certain 

restrictions).

� The device memory supports very high data bandwidth using a wide 
data path.
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NVIDIA GPUs
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• NVIDIA GPUs have a number of multiprocessors…

…each of them executes in parallel with the others.

• each multiprocessor has a group of (8-16) stream processors (core).

• Each core can execute a sequential thread, …

• …but the cores execute in SIMT (Single Instruction, Multiple Thread) 

fashion; fashion; 

• All cores in the same group execute the same instruction at the same time.

• The code is actually executed in groups of 32 threads, what NVIDIA calls a 

warp (indivisible unit of processing).

• There is also a small software-managed data cache attached to each 

multiprocessor, shared among the cores(shared memory). 

• This is a low-latency, high-bandwidth, indexable memory which runs 

essentially at register speeds. 5



NVIDIA Tesla Architecture
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• A Tesla multiprocessor has a group of 8 stream processors (core).

• The 8 cores of a processor execute one instruction for an entire warp (32 

threads) in four clock cycles.

• A Tesla supports up to 32 active warps on each multiprocessor.



NVIDIA Fermi Architecture
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• A Fermi multiprocessor has two groups of 16 stream processors.

• 2*16 cores to execute one instruction for each of two warps in two clock 

cycles.

• A Fermi supports up to 48 active warps on each multiprocessor.



Compute Capability Number
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• The compute capability of a device is defined by a major revision number 

and a minor revision number:

• Devices with the same major revision number are of the same core 

architecture.

• The minor revision number corresponds to an incremental 

improvement to the core architecture.

• For instance,

• The major revision number of devices based on the Fermi architecture 

is 2.x. Prior devices are all of compute capability 1.x.

• You can check the compute capability of your GPU on 
http://www.nvidia.com/object/cuda_gpus.html

• You can find the description of  all the compute capability in the CUDA C 

Programming Guide (http://developer.download.nvidia.com/compute/cuda/

3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf 8



Programming Fundamentals
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• GPUs are programmed as a sequence of kernels (a special kind of function).

• Typically, each kernel completes execution before the next kernel begins, 

with an implicit barrier synchronization between kernels (only one function 

can be executed on the device on the same time);

• Fermi has some support for multiple, independent kernels to execute 

simultaneously.
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Programming Fundamentals - Limitations
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• GPUs do not allow the multiprocessors to synchronize with each other.

• Threads can't spawn more threads; 

• Threads on one multiprocessor can't interact to threads on another 

multiprocessor;

• There's no facility for a critical section among all the threads across the 

whole system.whole system.

• No recursion in device code

• No function pointers in device code
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Introduction into CUDA
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• In parallel programming model of 

CUDA, the host program launches a 

sequence of kernels. 

• A kernel is organized as a hierarchy of 

threads: 

• Threads are grouped into blocks,

• and blocks are grouped into a grid. 
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• Each thread has a unique local 

index in its block, 

• and each block has a unique index 

in the grid. 

• Kernels can use these indices to 

compute array indices, for instance.



Kernel Definition I.
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• CUDA C extends C by allowing the programmer to define C functions, called 

kernels.

• When a kernel  is called, it is executed N times in parallel by N different CUDA 

threads.

• Each thread that executes the kernel is given a unique thread ID that is 

accessible within the kernel through the built-in threadIdx variable. 
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Kernel Definition II.
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• threadIdx is a 3-component/dimensional vector.

• Blocks are organized into a one-dimensional or two-dimensional grid of 

thread blocks(see blockIdx and blockDim). 13



Thread Blocks
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• Threads in a single block will always be executed on a single 

multiprocessor, so they can 

• share the software data cache, 

• and can synchronize and share data with threads in the same block.

• A warp will always be a subset of threads from a single block. 

• Threads in different blocks may be assigned to (depending on how the 

blocks are scheduled dynamically): 

• different multiprocessors concurrently,

• to the same multiprocessor concurrently (using multithreading), 

• or may be assigned to the same or different multiprocessors at 

different times.

• Thread blocks are required to execute independently (in any order) from 

each other.
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Typical Limitations of Thread Blocks
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• There is a hard limit on the size of a thread block:

• 512 threads or 16 warps for Tesla, 

• 1024 threads or 32 warps for Fermi. 

• Thread blocks are always created in warp units, so there is no point in 

trying to create a thread block of size that is not a multiple of 32 threads.

• All thread blocks in the whole grid will have the same size and shape.

• A Tesla multiprocessor can have 1024 threads simultaneously active, or 32 

warps:

• These can come from 2 thread blocks of 16 warps, 

• or 3 thread blocks of 10 warps, 

• or 4 thread blocks of 8 warps, and so on up to 8 blocks of 4 warps;

• Fermi can have 48 simultaneously active warps, equivalent to 1536 

threads, from up to 8 thread blocks. 

• (there is another hard limit, 8 thread blocks can simultaneously be active 

on a single multiprocessor in both architecture.) 15



Heterogeneous Programming 
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• CUDA threads execute on a physically 

separate device:

• When the kernels execute on a 

GPU,

• the rest of the C program executes 

on a CPU. 

• The CUDA programming model also • The CUDA programming model also 

assumes that both the host and the 

device maintain their own separate 

memory spaces (host memory and 

device memory). 

• Device memory can be allocated either 

as linear memory or as CUDA arrays.
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Asynchronous  Execution between Host and Device 
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• In order to facilitate concurrent execution between host and device, some 

function calls are asynchronous(!).

• This means control is returned to the host thread before the device has 

completed the requested task. These asynchronous  calls are:

o Kernel launches; 

o Device-device memory copies;

o Host-device memory copies of a memory block of 64 KB or less;

o Memory copies performed by functions that are suffixed with async;

o Memory set function calls. 
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Device Memory Example
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• cudaMalloc()

• using cudaFree()

• cudaMemcpy()
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Memory Hierarchy
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• CUDA threads may access to 

multiple memory spaces:

• Each thread has private local 

memory. 

• Each thread block has shared 

memory visible to all threads of 

the block and with the same 

lifetime as the block. 
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lifetime as the block. 

• All threads have access to the 

same global memory (persistent 

across kernel launches by the 

same application).



Shared Memory
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• Threads within a block can cooperate 

• by sharing data through some shared memory and 

• by synchronizing their execution to coordinate memory accesses. 

• For this, one can specify synchronization points in the kernel by calling the 

__syncthreads() function; 

• __syncthreads() acts as a barrier at which all threads in the block must 

wait before any is allowed to proceed.

• For efficient cooperation, the shared memory is expected to be a low-

latency memory near each processor core (much like an L1 cache).
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Example: Matrix Multiplication without Shared Memory
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Example: Matrix Multiplication with Shared Memory
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• each thread block is responsible for computing one square sub-matrix Csub of C 

and 

• each thread within the block is responsible for 

computing one element of Csub.

• Csub is equal to the product of two rectangular matrices: 

• The sub-matrix of A of 
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• The sub-matrix of A of 

dimension (A.width, block_size)

• and the sub-matrix of B of 

dimension (block_size, A.width). 

• Additional step I required: in every

turn two corresponding square 

matrices must be loaded from 

global memory to shared memory, 

• but this is done by concurrent threads (overhead is negligible).



Shared Memory Example: Definitions
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• Field stride is used in submatrices to query the width of the original 

matrix (to calculate the addresses of the first elements of rows).
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Shared Memory Example: Device Functions
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Shared Memory Example: Host Code, Part I.
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Shared Memory Example: Host Code, Part II.
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Shared Memory Example: Kernel, Part I.
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Shared Memory Example: Kernel, Part II.
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Using More than one GPU I.
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• A host system can have multiple GPU devices.

• But a host thread (e.g.: POSIX thread) can execute device code on only 

one device at any given time. 

• However multiple  host threads can execute device code:

• on the same device or

• on multiple devices.

• GPU devices can be enumerated, their properties can be queried, and one 

of them can be selected for kernel executions.
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Using More than one GPU II.
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• By default, the GPU device associated to the host thread is implicitly 

selected as device 0 (as soon as a GPU related function is called).

• Any other device can be selected by calling cudaSetDevice() first.

• Once a device has been selected, either implicitly or explicitly, the calling 

cudaThreadExit() must be called before another device selection. 
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Compiling a CUDA Program
Karoly.Bosa@jku.at

31



Trying out all these Things
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• If you have CUDA capable GPU:

• Download and install from the http://developer.nvidia.com/object/cuda_archive.html

• Developer Drivers

• CUDA Toolkit

• CUDA SDK

• It includes sample programs in source form.

• To compile them issue command make in the corresponding directory. 

• Remark: You cannot use CUDA under VMware (even your host has an NVIDIA 

GPU),  because the access to host GPU is not transparent (VMware always 

uses a generic video driver).

• If you do not have CUDA capable GPU:

• You should download the CUDA version 2.3 instead of the newest one (this is 

the last version which contains the CUDA emulator):

• To compile sample programs issue command make emu=1 in the 

corresponding directory. 32



Debugging (Linux)
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• Until CUDA 2.3, debugging CUDA program was possible only by using the 

emulator.

• In later version you could debug codes on the GPUs (with a compute 

capability of 1.1 or later).

• Limitation: X11 cannot be running on the GPU that is used for 

debugging(!).

• Compilation: nvcc -g -G .... 

• Debugger tool: cuda-dbg (an extension to the standard gdb).

• Detailed Documentation: 

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/

cuda-gdb.pdf 
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