
Introduction into Multicore
ProgrammingProgramming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

1

Karoly.Bosa@jku.at

Short Introduction into GPU
Programming in CUDAProgramming in CUDA

2

Introduction
Karoly.Bosa@jku.at

• GPUs were originally hardware blocks optimized for a small set of graphics

operations.

• For speed up graphics related computation, the (very efficient) data

parallelism was introduced on the GPUs.

• As it was demanded, GPUs became gradually more programmable for

general purposes.

• In late 2006, NVIDIA introduced its CUDA architecture and tools to make

data parallel computing on a GPU more straightforward.

• CUDA (an acronym for Compute Unified Device Architecture) is a

parallel computing architecture developed by NVIDIA.

3

GPU Hardware
Karoly.Bosa@jku.at

� A GPU is connected to a host through a high speed IO bus slot (typically a

PCI-Express).

� The GPU has its own device memory, up to several gigabytes.

� Data is usually transferred between the GPU and host memories using

programmed DMA.

� DMA can operate concurrently with both the host and GPU compute units � DMA can operate concurrently with both the host and GPU compute units

(support for direct access to host memory from the GPU under certain

restrictions).

� The device memory supports very high data bandwidth using a wide
data path.

4

NVIDIA GPUs
Karoly.Bosa@jku.at

• NVIDIA GPUs have a number of multiprocessors…

…each of them executes in parallel with the others.

• each multiprocessor has a group of (8-16) stream processors (core).

• Each core can execute a sequential thread, …

• …but the cores execute in SIMT (Single Instruction, Multiple Thread)

fashion; fashion;

• All cores in the same group execute the same instruction at the same time.

• The code is actually executed in groups of 32 threads, what NVIDIA calls a

warp (indivisible unit of processing).

• There is also a small software-managed data cache attached to each

multiprocessor, shared among the cores(shared memory).

• This is a low-latency, high-bandwidth, indexable memory which runs

essentially at register speeds. 5

NVIDIA Tesla Architecture
Karoly.Bosa@jku.at

6

• A Tesla multiprocessor has a group of 8 stream processors (core).

• The 8 cores of a processor execute one instruction for an entire warp (32

threads) in four clock cycles.

• A Tesla supports up to 32 active warps on each multiprocessor.

NVIDIA Fermi Architecture
Karoly.Bosa@jku.at

7

• A Fermi multiprocessor has two groups of 16 stream processors.

• 2*16 cores to execute one instruction for each of two warps in two clock

cycles.

• A Fermi supports up to 48 active warps on each multiprocessor.

Compute Capability Number
Karoly.Bosa@jku.at

• The compute capability of a device is defined by a major revision number

and a minor revision number:

• Devices with the same major revision number are of the same core

architecture.

• The minor revision number corresponds to an incremental

improvement to the core architecture.

• For instance,

• The major revision number of devices based on the Fermi architecture

is 2.x. Prior devices are all of compute capability 1.x.

• You can check the compute capability of your GPU on
http://www.nvidia.com/object/cuda_gpus.html

• You can find the description of all the compute capability in the CUDA C

Programming Guide (http://developer.download.nvidia.com/compute/cuda/

3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf 8

Programming Fundamentals
Karoly.Bosa@jku.at

• GPUs are programmed as a sequence of kernels (a special kind of function).

• Typically, each kernel completes execution before the next kernel begins,

with an implicit barrier synchronization between kernels (only one function

can be executed on the device on the same time);

• Fermi has some support for multiple, independent kernels to execute

simultaneously.

9

Programming Fundamentals - Limitations
Karoly.Bosa@jku.at

• GPUs do not allow the multiprocessors to synchronize with each other.

• Threads can't spawn more threads;

• Threads on one multiprocessor can't interact to threads on another

multiprocessor;

• There's no facility for a critical section among all the threads across the

whole system.whole system.

• No recursion in device code

• No function pointers in device code

10

Introduction into CUDA
Karoly.Bosa@jku.at

• In parallel programming model of

CUDA, the host program launches a

sequence of kernels.

• A kernel is organized as a hierarchy of

threads:

• Threads are grouped into blocks,

• and blocks are grouped into a grid.

11

• Each thread has a unique local

index in its block,

• and each block has a unique index

in the grid.

• Kernels can use these indices to

compute array indices, for instance.

Kernel Definition I.
Karoly.Bosa@jku.at

• CUDA C extends C by allowing the programmer to define C functions, called

kernels.

• When a kernel is called, it is executed N times in parallel by N different CUDA

threads.

• Each thread that executes the kernel is given a unique thread ID that is

accessible within the kernel through the built-in threadIdx variable.
12

Kernel Definition II.
Karoly.Bosa@jku.at

• threadIdx is a 3-component/dimensional vector.

• Blocks are organized into a one-dimensional or two-dimensional grid of

thread blocks(see blockIdx and blockDim). 13

Thread Blocks
Karoly.Bosa@jku.at

• Threads in a single block will always be executed on a single

multiprocessor, so they can

• share the software data cache,

• and can synchronize and share data with threads in the same block.

• A warp will always be a subset of threads from a single block.

• Threads in different blocks may be assigned to (depending on how the

blocks are scheduled dynamically):

• different multiprocessors concurrently,

• to the same multiprocessor concurrently (using multithreading),

• or may be assigned to the same or different multiprocessors at

different times.

• Thread blocks are required to execute independently (in any order) from

each other.

14

Typical Limitations of Thread Blocks
Karoly.Bosa@jku.at

• There is a hard limit on the size of a thread block:

• 512 threads or 16 warps for Tesla,

• 1024 threads or 32 warps for Fermi.

• Thread blocks are always created in warp units, so there is no point in

trying to create a thread block of size that is not a multiple of 32 threads.

• All thread blocks in the whole grid will have the same size and shape.

• A Tesla multiprocessor can have 1024 threads simultaneously active, or 32

warps:

• These can come from 2 thread blocks of 16 warps,

• or 3 thread blocks of 10 warps,

• or 4 thread blocks of 8 warps, and so on up to 8 blocks of 4 warps;

• Fermi can have 48 simultaneously active warps, equivalent to 1536

threads, from up to 8 thread blocks.

• (there is another hard limit, 8 thread blocks can simultaneously be active

on a single multiprocessor in both architecture.) 15

Heterogeneous Programming
Karoly.Bosa@jku.at

• CUDA threads execute on a physically

separate device:

• When the kernels execute on a

GPU,

• the rest of the C program executes

on a CPU.

• The CUDA programming model also • The CUDA programming model also

assumes that both the host and the

device maintain their own separate

memory spaces (host memory and

device memory).

• Device memory can be allocated either

as linear memory or as CUDA arrays.

16

Asynchronous Execution between Host and Device
Karoly.Bosa@jku.at

• In order to facilitate concurrent execution between host and device, some

function calls are asynchronous(!).

• This means control is returned to the host thread before the device has

completed the requested task. These asynchronous calls are:

o Kernel launches;

o Device-device memory copies;

o Host-device memory copies of a memory block of 64 KB or less;

o Memory copies performed by functions that are suffixed with async;

o Memory set function calls.

17

Device Memory Example
Karoly.Bosa@jku.at

• cudaMalloc()

• using cudaFree()

• cudaMemcpy()

18

Memory Hierarchy
Karoly.Bosa@jku.at

• CUDA threads may access to

multiple memory spaces:

• Each thread has private local

memory.

• Each thread block has shared

memory visible to all threads of

the block and with the same

lifetime as the block.

19

lifetime as the block.

• All threads have access to the

same global memory (persistent

across kernel launches by the

same application).

Shared Memory
Karoly.Bosa@jku.at

• Threads within a block can cooperate

• by sharing data through some shared memory and

• by synchronizing their execution to coordinate memory accesses.

• For this, one can specify synchronization points in the kernel by calling the

__syncthreads() function;

• __syncthreads() acts as a barrier at which all threads in the block must

wait before any is allowed to proceed.

• For efficient cooperation, the shared memory is expected to be a low-

latency memory near each processor core (much like an L1 cache).

20

Example: Matrix Multiplication without Shared Memory

Karoly.Bosa@jku.at

21

Example: Matrix Multiplication with Shared Memory

Karoly.Bosa@jku.at

• each thread block is responsible for computing one square sub-matrix Csub of C

and

• each thread within the block is responsible for

computing one element of Csub.

• Csub is equal to the product of two rectangular matrices:

• The sub-matrix of A of

22

• The sub-matrix of A of

dimension (A.width, block_size)

• and the sub-matrix of B of

dimension (block_size, A.width).

• Additional step I required: in every

turn two corresponding square

matrices must be loaded from

global memory to shared memory,

• but this is done by concurrent threads (overhead is negligible).

Shared Memory Example: Definitions
Karoly.Bosa@jku.at

• Field stride is used in submatrices to query the width of the original

matrix (to calculate the addresses of the first elements of rows).

23

Shared Memory Example: Device Functions
Karoly.Bosa@jku.at

24

Shared Memory Example: Host Code, Part I.
Karoly.Bosa@jku.at

25

Shared Memory Example: Host Code, Part II.
Karoly.Bosa@jku.at

26

Shared Memory Example: Kernel, Part I.
Karoly.Bosa@jku.at

27

Shared Memory Example: Kernel, Part II.
Karoly.Bosa@jku.at

28

Using More than one GPU I.
Karoly.Bosa@jku.at

• A host system can have multiple GPU devices.

• But a host thread (e.g.: POSIX thread) can execute device code on only

one device at any given time.

• However multiple host threads can execute device code:

• on the same device or

• on multiple devices.

• GPU devices can be enumerated, their properties can be queried, and one

of them can be selected for kernel executions.

29

Using More than one GPU II.
Karoly.Bosa@jku.at

• By default, the GPU device associated to the host thread is implicitly

selected as device 0 (as soon as a GPU related function is called).

• Any other device can be selected by calling cudaSetDevice() first.

• Once a device has been selected, either implicitly or explicitly, the calling

cudaThreadExit() must be called before another device selection.

30

Compiling a CUDA Program
Karoly.Bosa@jku.at

31

Trying out all these Things
Karoly.Bosa@jku.at

• If you have CUDA capable GPU:

• Download and install from the http://developer.nvidia.com/object/cuda_archive.html

• Developer Drivers

• CUDA Toolkit

• CUDA SDK

• It includes sample programs in source form.

• To compile them issue command make in the corresponding directory.

• Remark: You cannot use CUDA under VMware (even your host has an NVIDIA

GPU), because the access to host GPU is not transparent (VMware always

uses a generic video driver).

• If you do not have CUDA capable GPU:

• You should download the CUDA version 2.3 instead of the newest one (this is

the last version which contains the CUDA emulator):

• To compile sample programs issue command make emu=1 in the

corresponding directory. 32

Debugging (Linux)
Karoly.Bosa@jku.at

• Until CUDA 2.3, debugging CUDA program was possible only by using the

emulator.

• In later version you could debug codes on the GPUs (with a compute

capability of 1.1 or later).

• Limitation: X11 cannot be running on the GPU that is used for

debugging(!).

• Compilation: nvcc -g -G

• Debugger tool: cuda-dbg (an extension to the standard gdb).

• Detailed Documentation:

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/

cuda-gdb.pdf

33

