Introduction into Multicore
Programming

Karoly Bosa
(Karoly.Bosa@ijku.at)

Research Institute for Symbolic Computation
(RISC)

Karoly.Bosa@ jku.at

Short Introduction into GPU
Programming in CUDA

Introduction

I Karoly.Bosa@ jku.at

GPUs were originally hardware blocks optimized for a small set of graphics
operations.

For speed up graphics related computation, the (very efficient) data
parallelism was introduced on the GPUs.

As it was demanded, GPUs became gradually more programmable for
general purposes.

In late 2006, NVIDIA introduced its CUDA architecture and tools to make
data parallel computing on a GPU more straightforward.

CUDA (an acronym for Compute Unified Device Architecture) is a
parallel computing architecture developed by NVIDIA.

GPU Hardware

I Karoly.Bosa@ jku.at

A GPU is connected to a host through a high speed 10 bus slot (typically a
PCI-Express).

The GPU has its own device memory, up to several gigabytes.

Data is usually transferred between the GPU and host memories using
programmed DMA.

DMA can operate concurrently with both the host and GPU compute units
(support for direct access to host memory from the GPU under certain
restrictions).

The device memory supports very high data bandwidth using a wide
data path.

NVIDIA GPUs

I Karoly.Bosa@ jku.at

 NVIDIA GPUs have a number of multiprocessors...
...each of them executes in parallel with the others.

« each multiprocessor has a group of (8-16) stream processors (core).
« Each core can execute a sequential thread, ...

« ...but the cores execute in SIMT (Single Instruction, Multiple Thread)
fashion;

« All cores in the same group execute the same instruction at the same time.

« The code is actually executed in groups of 32 threads, what NVIDIA calls a
warp (indivisible unit of processing).

« There is also a small software-managed data cache attached to each
multiprocessor, shared among the cores(shared memory).

« This is a low-latency, high-bandwidth, indexable memory which runs
essentially at register speeds. 5

NVIDIA Tesla Architecture

Karoly.Bosa@ jku.at
% X86 g Control l[Thread EHEEuli:m Control Unit]
E - ; T e T e T 71
] [] [-
I Provemne Proceman [e—— — wlm
i N
e Soecal
unchan Linm i =
Host
Memory o E: "
= Device Memory]
\

« ATesla multiprocessor has a group of 8 stream processors (core).

« The 8 cores of a processor execute one instruction for an entire warp (32

threads) in four clock cycles.

« ATesla supports up to 32 active warps on each multiprocessor.

NVIDIA Fermi Architecture

Karoly.Bosa@ jku.at
Execution Queue)
Control I
4 *
Host Duai Warp lssue Dual Warp besue Dousal Warp ke
C I ———— ———

.
o
Thicad Processass

Host
Memory

DMIA

Device Memory

A Fermi multiprocessor has two groups of 16 stream processors.

« 2"16 cores to execute one instruction for each of two warps in two clock
cycles.

A Fermi supports up to 48 active warps on each multiprocessor.

Compute Capability Number

I Karoly.Bosa@ jku.at

The compute capability of a device is defined by a major revision number
and a minor revision number:

« Devices with the same major revision number are of the same core
architecture.

« The minor revision number corresponds to an incremental
improvement to the core architecture.

For instance,

« The major revision number of devices based on the Fermi architecture
is 2.X. Prior devices are all of compute capability 1.x.

You can check the compute capability of your GPU on
http://www.nvidia.com/object/cuda_gpus.html

You can find the description of all the compute capability in the CUDA C
Programming Guide (http://developer.download.nvidia.com/compute/cuda/
3_2 prod/toolkit/docs/CUDA_C_Programming_Guide.pdf 8

Programming Fundamentals

I Karoly.Bosa@ jku.at

GPUs are programmed as a sequence of kernels (a special kind of function).

Typically, each kernel completes execution before the next kernel begins,
with an implicit barrier synchronization between kernels (only one function
can be executed on the device on the same time);

Fermi has some support for multiple, independent kernels to execute
simultaneously.

Programming Fundamentals - Limitations

I Karoly.Bosa@ jku.at

GPUs do not allow the multiprocessors to synchronize with each other.
Threads can't spawn more threads;

Threads on one multiprocessor can't interact to threads on another
multiprocessor;

There's no facility for a critical section among all the threads across the
whole system.

No recursion in device code

No function pointers in device code

10

Introduction into CUDA

Karoly.Bosa@ jku.at

In parallel programming model of
CUDA, the host program launches a
sequence of kernels.

A kernel is organized as a hierarchy of
threads:

« Threads are grouped into blocks,

« and blocks are grouped into a grid.

Each thread has a unique local
index in its block,

Grid

Block (0, 0)

Block (1, 0) | Block (2, 0)

Block (0, 1)~

Block (1, 1) | Block (2, 1)

and each block has a unique index
in the grid.

Kernels can use these indices to
compute array indices, for instance.

Block (1, 1)

Kernel Definition .

I Karoly.Bosa@ jku.at

[/ Kernel definition
_ a'obal vyl WeeRddfiioai* A, Flpagl* B, Fleai s)

int 1 = threadldx.x;
1]l - npil 3 Bl

int main()

{/ Eernel invocation with N threads

VecBdd<<<1, N>>>{A,L B, C);:

« CUDA C extends C by allowing the programmer to define C functions, called
kernels.

« When a kernel is called, it is executed N times in parallel by N different CUDA
threads.

« Each thread that executes the kernel is given a unique thread ID that is 12
accessible within the kernel through the built-in threadldx variable.

Kernel Definition Il.

Karoly.Bosa@ jku.at

int

float C[N][I[N])
int 1 = blockldx x * blockDim. x I+ threadidx_ x:
= blockIdx.y * blockDim.y + threadIdx.y:
1iF |1 - W EE | - N
1111 — Alil}j] + Blil})jl:

main ()

¥ o - [.
4 .-\\r,:l""!"!,: | TRYWOCAT T O0ON
| o f1 4

o B Dl L. AN

dim3 threadsPerBlock(l6, 16)};

obal void MatAdd(float A[N] [N], float B[N] [N],
]

dim3 numBlocks (N / threadsPerBlock.x, N / threadsPerBlock.y):

MatAdd<<<numBlocks, threadsPerBlock>>>(aA, B, C);

threadldx is a 3-component/dimensional vector.

Blocks are organized into a one-dimensional or two-dimensional grid of

thread blocks(see blockldx and blockDim).

13

Thread Blocks

I Karoly.Bosa@ jku.at

« Threads in a single block will always be executed on a single
multiprocessor, so they can

« share the software data cache,
« and can synchronize and share data with threads in the same block.
« Awarp will always be a subset of threads from a single block.

« Threads in different blocks may be assigned to (depending on how the
blocks are scheduled dynamically):

« different multiprocessors concurrently,
« to the same multiprocessor concurrently (using multithreading),

« or may be assigned to the same or different multiprocessors at
different times.

« Thread blocks are required to execute independently (in any order) from 14
each other.

Typical Limitations of Thread Blocks

I Karoly.Bosa@ jku.at

« There is a hard limit on the size of a thread block:
512 threads or 16 warps for Tesla,
« 1024 threads or 32 warps for Fermi.

« Thread blocks are always created in warp units, so there is no point in
trying to create a thread block of size that is not a multiple of 32 threads.

. All thread blocks in the whole grid will have the same size and shape.

« ATesla multiprocessor can have 1024 threads simultaneously active, or 32
warps:
« These can come from 2 thread blocks of 16 warps,
« or 3thread blocks of 10 warps,
« or4thread blocks of 8 warps, and so on up to 8 blocks of 4 warps;

Fermi can have 48 simultaneously active warps, equivalent to 1536
threads, from up to 8 thread blocks.

15

Heterogeneous Programming

Karoly.Bosa@ jku.at

CUDA threads execute on a physically

separate device:

When the kernels execute on a
GPU,

» the rest of the C program executes
on a CPU.

The CUDA programming model also
assumes that both the host and the
device maintain their own separate
memory spaces (host memory and
device memory).

Device memory can be allocated either
as linear memory or as CUDA arrays.

Serial code

Parallel kernel

Fernel(<<<>>> ()

Serial code

Parallel kernel

Kernell<<<>>>()

Host g

Device

Grid 0

Block (0, 0) || Block (1,0) = Block (2, 0)

Block (0, 1) || Block (1,1) = Block (2, 1)

Host g

Device

Grid 1

Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

Asynchronous Execution between Host and Device

I Karoly.Bosa@ jku.at

In order to facilitate concurrent execution between host and device, some
function calls are asynchronous(!).

This means control is returned to the host thread before the device has
completed the requested task. These asynchronous calls are:

O

O

Kernel launches;

Device-device memory copies;

Host-device memory copies of a memory block of 64 KB or less;
Memory copies performed by functions that are suffixed with async;

Memory set function calls.

17

Device Memory Example
I Karoly.Bosa@ jku.at

'/ Device code

__global void VecAdd(float* A, float* B, float* C, int N) ° cudaMalloc()
{
inE 1 - Bleekihn x * blecklds x | theeadilds x;)
i i = W] . using cudaFree()
cli] — Afi] + BIi]:
}

« cudaMemcpy()
// Host code
int main ()

{ -

o . // Copy vectors from host memory to device memory
e o N oo iElon) cudaMemcpy (d A, h A, S}ze, cudaMemcpyHostToDev%ce};
= cudaMemcpy (d B, h B, size, cudaMemcpyHostToDevice):

cudaMalloc (&d C, size):

// RAllocate input vectors h A and
// h B in host memory
float* h A = (float*)malloc(size); (| o o
float* h B = (float*)malloc (size); s e b a5 2

int blocksPerGrid =
// Initialize input vectors (N + threadsPerBlock — 1) / threadsPerBlock:
. VecBRdd<<<blocksPerGrid, threadsPerBlock>>>{(d A, d B, d C, N}:
// Allocate vectors in device memory // Copy result from device memory to host memory
float* d A; /f h C contains the result in host memory
cudaMalloc (&d A, size); cudaMemcpy (h C, d C, size, cudaMemcpyDeviceToHost):
float* d B:
cudaMalloc (&d B, size); // Free device memory
tleaks d C; cudaFree (d_A);

cudaFree(d B);

cudaFree(d C);

// Free host memory

Memory Hierarchy

I Karoly.Bosa@ jku.at

Thread

- CUDAthreads may access to g)
multiple memory spaces:)

« Each thread has private local
memory. Thread Block _

p » Per-block shared
et > memory

. Per-thread local
memory

« Each thread block has shared
memory visible to all threads of

the block and with the same Grid 0
lifetime as the block. Block (0,0) | Block (1,0) || Block (2, 0)
. All threads have access to the Block (0, 1) || Block (1, 1) | Block (2, 1)

same global memory (persistent
across kernel launches by the

same app|ICatIOn) ek Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

Shared Memory

I Karoly.Bosa@ jku.at

Threads within a block can cooperate
* by sharing data through some shared memory and
« by synchronizing their execution to coordinate memory accesses.

For this, one can specify synchronization points in the kernel by calling the
__syncthreads() function;

__syncthreads() acts as a barrier at which all threads in the block must
wait before any is allowed to proceed.

For efficient cooperation, the shared memory is expected to be a low-
latency memory near each processor core (much like an L1 cache).

20

Example: Matrix Multiplication without Shared Memory

A.height-1

I Karoly.Bosa@ jku.at
.'g
0 col =]
L 1l Ll
3
B
=
D
2
@
0= P 1:
A C :
¥ 5
i a i 2
FOWY] | || - D - CCCCCICIIZZICC n <
A.width il B.width .
- = v
21

Example: Matrix Multiplication with Shared Memory

B Karoly.Bosa@ jku.at

each thread block is responsible for computing one square sub-matrix G, of C
and

each thread within the block is responsible for
computing one element of C,.

C,p IS equal to the product of two rectangular matrices:

BLOCK_SIZE BLOCK_SIZE

The sub-matrix of A of
dimension (A.width, block_size) A ¢

« and the sub-matrix of B of) di
dimension (block_size, A.width). i

BLOCK_SIZE

Additional step | required: in every : row=|
turn two corresponding square BLOCK_S12E-17]
. >4 B ‘+—p

matrices must be loaded from BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
global memory to shared memory,

A.width B.width

-
Lo

B.height

A.height

= i
- Lt B |

but this is done by concurrent threads (overhead is negligible). 20

v

Shared Memory Example: Definitions

I Karoly.Bosa@ jku.at

typedef struct |
int width;
int height;
int stride;
float* elements;
} Matrix;

Thread block size

define BLOCK SIZE 1lé

 Field stride is used in submatrices to query the width of the original
matrix (to calculate the addresses of the first elements of rows).

23

Shared Memory Example: Device Functions

I Karoly.Bosa@ jku.at

Get a matrix element
__device Tfloat GetElement (const Matrix A, int row, int col)
{

return A.elements[row * A.stride + col];

Set a matrix element
__device vwvoid SetElement (Matrix A, int row, int col,
float walue)

A_elements[row * A.stride + col] = wvalue;

Get the BLOCK SIZEXBLOCK SIZE

E sub-matrix Asub of A that is
located col sub-matrices to the right and row sub-matrices down
from the upper-left corner of A
__device Matrix GetSubMatrix(Matrix A, int row, int col)
{
Matrix Asub;
Asub.width BLOCK STIZE;
Asub.height BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements tA.elements[A.stride * BLOCK SIZE * row
+ BLOCK SIZE * col]l:;

return Asub;

Shared Memory Example: Host Code, Part I.

I Karoly.Bosa@ jku.at

Matrix multiplication - Host code
Matrix dimensions are assumed to be multiples of BLOCE SIZE
void MatMul (const Matrix A, const Matrix B, Matrix C)

R, I

bl = allid

I
3
o,
i

Matrix d A;

d A_width = d A_stride = A.width; d A_height = A.height;

gize £ size = A.width * A.height * sizeof (float];

cudaMalloc (&d A

cudaMemcpy (d A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d B;

d B.width = d B.stride = B.width; d B.height = B.height;

gize = B.width * B.height * sizeof(float);

cudaMalloc (&d B.elements, size);

.elements, size);

cudaMemcpy (d B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

d_C.with = d C.otride = C.width: d C.heighi = €.beight;
gize — C.width * C.height * sizeof(float};
cudaMalloc (&d C.elements, size);

25

Shared Memory Example: Host Code, Part Il.

I Karoly.Bosa@ jku.at

s
i ke kernel

di rr3 :11]:1'|.E! ock (BLOCK SIZE, BLOCK SIZE);
dim3 dimGrid(B.width / dimBlock.x, ZA.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);

Read C from device memory
cudaMemcpy (C.elements, d C.elements, size,
cudaMemcpyDeviceToHost) ;

| e L W L

cudaFree(d A El
cudaFree (d B. El-r:r1=-1'1ts],r
cudaFree (d C.ele

26

Shared Memory Example: Kernel, Part I.

I Karoly.Bosa@ jku.at

Matrix multiplication kernel called by MatMul ()
__global void MatMulFernel (Matrix A, Matrix B, Matrix C)
lock row and column

int blockRow = blockIdx.y;

—

Each thread block computes one sub-matrix Csubk of C
r GetSubMatrix (C, blockRow, blockCol);

2
i
i
&
I

i = 2
S, N, IR, [T I [, -

Each thread computes one element of Csuk
R B T, ([T S S e

DY accumulacling IresultsS 1nto Lvalue

I
-
=

float Cwalue

Thread row and column within Csuk
int row = threadIdx.y;
int col

in

27

Shared Memory Example: Kernel, Part Il.

Karoly.Bosa@ jku.at

for

SetElement (Csub,

(int m = 0; m < (A.width / BLOCE SIZE); ++m)

Gt pf A

Matrix Asub = GetSubMatrix (A, blockRow,

Asub

sub-—-matrix

m} ;

sub—-matrix Bsub of B

Matrix Bsub = GetSubMatrix (B, m, blockCol);

Shared memory used to store Asuk and Bsub respectively
_ shared float &s[BLOCE SIZE] [BLOCEK SIZE];
__ shared float Bs[BLOCE SIZE] [BLOCE SIZE];
Load Asub and Bsub from device memory to shared memory
Each thread loads one element of each sub-matrix

Az [row] [col] =
Bs[row] [col] =

GetElement (Asulb,
GetElement (Bsub,

row,

rowW,

Synchronize to make sur he sub-ms it ars loaded

before starting the
syncthreads () ;
Multiply Asub and Bsub gether

for {int e — 0; e = BWOER SIZE;

Cvalue += As|[row] [e] * Bs[e] [col];

28

row, col,

Cwvalue) ;

Using More than one GPU I.

I Karoly.Bosa@ jku.at

A host system can have multiple GPU devices.

But a host thread (e.g.: POSIX thread) can execute device code on only
one device at any given time.

However multiple host threads can execute device code:
« onthe same device or
« on multiple devices.

GPU devices can be enumerated, their properties can be queried, and one
of them can be selected for kernel executions.

29

Using More than one GPU II.

I Karoly.Bosa@ jku.at

int deviceCount;

cudaGetDeviceCount (&deviceCount) ;

int device:

fTor {device = 0; device <€ deviceCount: tidevice) |
cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp, device):

1f (dewvice == 0) {
if (deviceProp.major == 9999 && deviceProp.minor == 9999)
printf ("There is no device supporting CUDA.\n"):
else if (deviceCount == 1)
printf ("There is 1 device supporting CUDA\n"):;
else

printf ("There are %d devices supporting CUDA\n",
deviceCount) ;

I

« By default, the GPU device associated to the host thread is implicitly
selected as device 0 (as soon as a GPU related function is called).

« Any other device can be selected by calling cudaSetDevice() first.

« Once a device has been selected, either implicitly or explicitly, the calling 30
cudaThreadExit() must be called before another device selection.

Compiling a CUDA Program

I Karoly.Bosa@ jku.at

C/C++ CUDA
Application

Virtual PTX

i T GO o

CPU GPU
Instructions Instructions | 4,

Trying out all these Things

L Karoly.Bosa@ jku.at
- If you have CUDA capable GPU:

« Download and install from the http://developer.nvidia.com/object/cuda_archive.html
« Developer Drivers
« CUDA Toolkit
« CUDASDK
* ltincludes sample programs in source form.
« To compile them issue command make in the corresponding directory.

Remark: You cannot use CUDA under VMware (even your host has an NVIDIA
GPU), because the access to host GPU is not transparent (VMware always
uses a generic video driver).

« If you do not have CUDA capable GPU:

* You should download the CUDA version 2.3 instead of the newest one (this is
the last version which contains the CUDA emulator):
« To compile sample programs issue command make emu=1 in the

corresponding directory. 32

Debugging (Linux)

I Karoly.Bosa@ jku.at

Until CUDA 2.3, debugging CUDA program was possible only by using the
emulator.

In later version you could debug codes on the GPUs (with a compute
capability of 1.1 or later).

Limitation: X11 cannot be running on the GPU that is used for
debugging(!).

Compilation: nvee -g -G
Debugger tool: cuda-dbg (an extension to the standard gdb).
Detailed Documentation:

http://developer.download.nvidia.com/compute/cuda/3_2 prod/toolkit/docs/
cuda-gdb.pdf

33

