
Introduction into Multicore
ProgrammingProgramming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

1

Karoly.Bosa@jku.at

Dates of the Final Exam

• There will be a written exam.

• Dates:

� 10th of February (Thursday) 10:15 – 11:45 K 224B

� 24th of February (Thursday) 10:15 – 11:45 K 224B

2

Topic
Karoly.Bosa@jku.at

Communication (IPC and ITC)

• Interprocess Communication (IPC)

• Persistence of IPC

• Types of IPC

• Names of POSIX Objects

• Environment Variables and Command Line Arguments

• Using Files for Communication

• Shared Memory

• Pipes• Pipes

• Message Queues

• Interthread Communications (ITC)

• Usage of Global Variables

• Parameters for Interthread Communication

• An addition: Signals

3

Unidirectional Communication
Karoly.Bosa@jku.at

• An example: Process A

sends a message to B

which contains the

names of the files that

B intends to process.

• Another example:• Another example:

thread A would write

the name of the file to a

global variable, and

thread B would simply

read that variable.

4

Bidirectional Communication
Karoly.Bosa@jku.at

• An example: Process

• A use pipe 1 to send

the name of the file

that process B has

to process.

• Outcome is written

into another file

whose name is sentwhose name is sent

back to process via

pipe 2.

• Another example:

Thread A and thread B

can use two global data

structures for the same

purpose.

5

Interprocess Communication (IPC)
Karoly.Bosa@jku.at

• Processes have their own address space.

• Data that is declared in one process is not available in another process.

• Events that happen in one process are not known to another process.

• The data in the stack and data segments or is dynamically allocated in

memory protected from other processes.

• The operating system APIs by which a process can sends data or events to

another process is called Interprocess Communication (IPC) mechanisms.

• The operating system’s kernel acts as the communication channel between

the processes, e.g.:

• posix_queue

• Files for communication

• Shared memory

6

Persistence of IPC
Karoly.Bosa@jku.at

• It refers to the existence of an object during or beyond the execution of the

program, process, or thread that created it.

• IPC entities reside in the filesystem, in kernel space, or in user space, and

persistence is also defined the same way:

• Filesystem persistence: IPC object exist until they are deleted

explicitly. If the kernel is rebooted, the objects will keep its value.

• Kernel persistence: IPC objects remain in existence until the kernel

is rebooted or the object is deleted explicitly.

• Process persistence: IPC objects exists until the process that

created the object finishes its running.

7

Types of IPC
Karoly.Bosa@jku.at

• For processes that are not related (e.g.: parent-child), named IPC objects are

available.

• For IPCs that require a POSIX IPC name, that name must begin with a slash

and contain no other slashes.

• To create the IPC object, one must have write permissions for the directory.

8

Environment Variables and Command Line Arguments

Karoly.Bosa@jku.at

• Parent processes share their resources with child processes.

• By using posix_spawn, or the exec functions, the parent process can create

the child process:

• with exact copies of its environment variables or

• initialize them with new values.

• argv[] and envp[] are used to pass a list of command line argument and

environment variables to the new process.

• This is one-way, one-time communication.

9

Using Files for Communication
Karoly.Bosa@jku.at

• Using files to transfer data between processes is one of the simplest and

most flexible means of transferring or sharing data.

• When you use files to communicate between processes, you follow seven

basic steps :

1. The name of the file has to be communicated.

2. You must verify the existence of the file.

3. Be sure that the correct permission are granted to access to the file.3. Be sure that the correct permission are granted to access to the file.

4. Open the file.

5. Synchronize access to the file.

6. While reading/writing to the file, check to see if the stream is good and

that it’s not at the end of the file.

7. Close the file.

• Remark: files have filesystem persistence; in this case, the persistence

can survive a system reboot.

10

File Descriptors
Karoly.Bosa@jku.at

• File descriptors are unsigned integers used by a process to identify an
open file.

• They are indices to the file descriptor table, a block maintained by the
kernel for each process.

• When a child process is created, the descriptor table is copied for the
child process,child process,

• which allows the child process to have equal access to the files used
by the parent.

• The number of file descriptors that can be allocated to a process is
restricted by a resource limit.

• The limit can be changed by setrlimit().

11

Shared Memory
Karoly.Bosa@jku.at

• A block of shared memory can be used to transfer information between

processes.

• The shared block of memory is separate from the address space of the

processes.

• A process gains access to the shared memory by temporarily connecting the

shared memory block to its own memory block.

• Shared memory can be written to and read by only a single process as well

and held open by that process.

• Other processes can attach to and detach from the shared memory any

time.

• The shared memory related function calls can map either files or internal
memory to the shared memory region.

• In case of usage of shared memory, synchronization is required (otherwise

data race can occur). 12

Using POSIX Shared Memory
Karoly.Bosa@jku.at

• The function maps len bytes starting at offset offset in the file or other object

specified by the file descriptor fd into memory, preferably at address addr.

• The addr is usually specified as 0. The actual place where the object is

mapped in memory is returned and is never 0. mapped in memory is returned and is never 0.

•

13

An Example of Memory Mapping with a File
Karoly.Bosa@jku.at

• To create a shared memory:

• open a file and store the file descriptor;

• then call mmap() with the appropriate arguments and store the

returning void * . returning void * .

• Use a semaphore when accessing the variable.

• The void * may have to be type cast. depending on the data you are trying

to manipulate.

14

Using Shared Memory with Internal Memory I.
Karoly.Bosa@jku.at

• A function that creates a shared memory object is used instead of a

function that opens a file:

• The shm_open() creates and opens a new or opens an existing POSIX

shared memory object. shared memory object.

• To ensure the portability of name use an initial slash (/) and don’t use

embedded slashes.

• shm_open() returns a new file descriptor referring to the shared memory

object.

• E.g.:

15

Using Shared Memory with Internal Memory II.
Karoly.Bosa@jku.at

Remark: Definitions of these flag values can be obtained by including
<fcntl.h> and mode constant by including <sys/stat.h>

16

Creating POSIX Shared Memory
Karoly.Bosa@jku.at

• shm_open() open (or create) a shared memory object with the given POSIX

name.

• The flags argument instructs on how to open the object: the most relevant • The flags argument instructs on how to open the object: the most relevant

ones are

• O_RDONLY xor O_RDWR for access type, and

• O_CREAT for create if object doesn't exist.

• mode is only used when the object is to be created, and specifies its access

permission.

• shm_unlink() removes a shared memory object specified by name.

• If some process is still using the shared memory segment associated to name,

the segment is not removed until all references to it have been closed. 17

Shared Memory Example - Server
Karoly.Bosa@jku.at

#include <stdio.h>

/* shm_* stuff, and mmap() */

#include <sys/mman.h>

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <stdlib.h>

#include <time.h>

#define SHMOBJ_PATH "/foo1234"

/* creating the shared memory object -- shm_open() */

shmfd = shm_open(SHMOBJ_PATH, O_CREAT |

O_EXCL | O_RDWR, S_IRWXU | S_IRWXG);

if (shmfd < 0) { perror("In shm_open()"); exit(1); }

fprintf(stderr, "Created shared memory object %s\n",

SHMOBJ_PATH);

/* adjusting mapped size (make room for the whole */

ftruncate(shmfd, shared_seg_size);

/* requesting the shared segment -- mmap() */

shared_msg = (struct msg_s *)mmap(NULL, shared_seg_size,

PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);
#define SHMOBJ_PATH "/foo1234"

#define MAX_MSG_LENGTH 50

/* how many types of messages we

recognize (fantasy) */

#define TYPES 8

struct msg_s {

int type;

char content[MAX_MSG_LENGTH];

};

int main(int argc, char *argv[]) {

int shmfd;

int shared_seg_size = (1 * sizeof(struct msg_s));

struct msg_s *shared_msg; 18

PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);

if (shared_msg == NULL) { perror("In mmap()"); exit(1); }

fprintf(stderr, "Shared memory segment allocated correctly (%d

bytes).\n", shared_seg_size);

srandom(time(NULL));

shared_msg->type = random() % TYPES;

snprintf(shared_msg->content, MAX_MSG_LENGTH, "My

message, type %d.", shared_msg->type);

/* [uncomment if you wish] requesting the removal of the shm

object -- shm_unlink() */

/* if (shm_unlink(SHMOBJ_PATH) != 0) {

perror("In shm_unlink()"); exit(1); } */

return 0;

}

Shared Memory Example - Client
Karoly.Bosa@jku.at

#include <stdio.h>

#include <unistd.h> /* exit() etc */

#include <sys/mman.h> /* shm_* stuff, and mmap() */

#include <sys/types.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <stdlib.h> /* for random() stuff */

#include <time.h>

#define SHMOBJ_PATH "/foo1423"

#define MAX_MSG_LENGTH 50

/* openning the shared memory object -- shm_open() */

shmfd = shm_open(SHMOBJ_PATH, O_RDWR, S_IRWXU |

S_IRWXG);

if (shmfd < 0) { perror("In shm_open()"); exit(1); }

printf("Created shared memory object %s\n",

SHMOBJ_PATH);

/* requesting the shared segment -- mmap() */

shared_msg = (struct msg_s *)mmap(NULL, shared_seg_size,

PROT_READ | PROT_WRITE, MAP_SHARED, shmfd, 0);

if (shared_msg == NULL) { perror("In mmap()"); exit(1); }

printf("Shared memory segment allocated correctly (%d
#define MAX_MSG_LENGTH 50

#define TYPES 8

struct msg_s { /* message structure */

int type;

char content[MAX_MSG_LENGTH];

};

int main(int argc, char *argv[]) {

int shmfd;

/* want shared segment capable of storing 1 message */

int shared_seg_size = (1 * sizeof(struct msg_s));

struct msg_s *shared_msg;

19

printf("Shared memory segment allocated correctly (%d

bytes).\n", shared_seg_size);

printf("Message type is %d, content is: %s\n",

shared_msg->type, shared_msg->content);

return 0;

}

Compile with:
gcc --ansi --Wall -o shm_msgserver shm_msgserver.c
gcc --ansi --Wall -o shm_msgclient shm_msgclient.c

Pipes I.
Karoly.Bosa@jku.at

• Pipes are communication channels used to transfer data between two

processes.

• data transfer using pipes require the sending and receiving of data to be

active at the same time.

• The general rule is:

• One process (the writer) opens or creates the pipe and

• then blocks until another process (the reader) opens the same pipe for

reading.

• There are two kinds of pipes:

• Anonymous (only to transfer data between related processes(e.g.:

parent-child relationship)).

• Named (also called FIFO).

• Named pipes have process persistence(the data itself), but the file

structure has filesystem persistence).
20

Pipes II.
Karoly.Bosa@jku.at

• Pipes create a flow of data from one end in one process (input end) to the

other end that is in another process (output end).

• The data becomes a stream of bytes that flows in one direction through the

pipe.

• Two pipes can be used to create bidirectional flow of communication

between the processes.

21

Pipes III.
Karoly.Bosa@jku.at

• Anonymous pipes are temporary and exist only while the process that

created them has not terminated.

• Named pipes (FIFO) are special types of files and exist in the filesystem:

• A program that creates it can finish executing and leave it in the

filesystem,

• but the data that was placed in the pipe will not be present.

• Future programs and processes can then access the named pipe

later, writing new data to the pipe.

• Named pipes have file permission settings associated with them and

anonymous pipes do not.

22

Using Named Pipes (FIFO)
Karoly.Bosa@jku.at

• mkfifo() creates a named pipe using pathname as the name of the FIFO with

permission specified by mode.

• It is always created with O_CREAT | O_EXCL flags, which means • It is always created with O_CREAT | O_EXCL flags, which means

• it creates a new named pipe with the name specified if it does not exist;

• if is does exist, an error EEXIST is returned.

• So, if you want to open an already existing named pipe,

• call the function, and check for this error;

• if the error occurs then use open() instead of mkfifo().

• The unlink() removes the filename pathname from the filesystem.

23

Example for FIFO – A Writer Code
Karoly.Bosa@jku.at

• The program creates a

named pipe.

• then opens the pipe with

an fstream object called
Pipe.

• Pipe has been opened• Pipe has been opened

for output using the
ios::out flag.

• Although Pipe is ready

for input, it blocks

(waits) until another

process has opened for

reading.

24

Example for FIFO – A Reader Code
Karoly.Bosa@jku.at

• Pipe opening for input and

output as well (in line 16)

will prevent deadlock (in

case of the unsafe of

fstream).

25

Message Queues
Karoly.Bosa@jku.at

• A message queue is a linked list of strings or messages

• This IPC mechanism allows processes with the adequate permissions to

the queue to write or remove messages.

• With a message queue, a writer process can write to the message queue

and then terminate. The data is retained in the queue.

• The message queue has kernel persistence.• The message queue has kernel persistence.

• When reading a message from the queue, the oldest message with the

highest priority is returned.

• Each message in the queue has these attributes:

• A priority

• The length of the message

• The message or data
26

Using Message Queue I.
Karoly.Bosa@jku.at

• mq_open() creates a message queue with the specified name .

• The message queue uses oflag with these possible values to specify the

access modes:

• O_RDONLY : Open to receive messages

• O_WRONLY : Open to send messages

• O_RDWR : Open to send or received messages

• Any combination of the remaining flags may be specified in the value of oflag:

• O_CREAT : Create a message queue.

• O_EXCL : The function fails if the pathname already exists.

• O_NONBLOCK : Determines if queue waits for resources or messages

that are not currently available.

27

Using Message Queue II.
Karoly.Bosa@jku.at

• The last parameter is an attribute structure that describes the properties of the
message queue :

struct mq_attr {

long mq_flags; //flagslong mq_flags; //flags

long mq_maxmsg; //maximum number of messages allowed

long mq_msgsize; //maximum size of message

long mq_curmsgs; //number of messages currently in queue

}

• mq_close() closes the message queue, but the message queue still exists in

the kernel.

• unlink() removes the message queue specified by name from the system.

28

Using Message Queue III.
Karoly.Bosa@jku.at

• When you are setting the attribute with mq_setattr , only the mq_flags

are set in the attr structure.

• Other attributes are not affected. mq_maxmsg and mq_msgsize are

set when the message queue is created.

• mq_curmsg can be returned and not set.

• oattr contains the previous values for the attributes.

29

Using Message Queue IV.
Karoly.Bosa@jku.at

• The message is stored in *ptr.

• The prio argument is a non-negative integer that specifies the priority of this

message: message:

• Messages are placed on the queue in decreasing order of priority,

• with newer messages being placed after older messages with the

same priority.

• If the message queue is already full then, mq_send() blocks until sufficient

space becomes available.

• For mq_receive(), the len must be at least the maximum size of the message.

If prio is not NULL, it is used to return the priority associated with the

received message. 30

Message Queue Example - Sender
Karoly.Bosa@jku.at

#include <stdio.h>

#include <mqueue.h> /* mq_* functions */

#include <sys/stat.h>

#include <stdlib.h> /* exit() and atoi() */

#include <unistd.h> /* getopt() */

#include <time.h> /* ctime() and time() */

#include <string.h> /* strlen() */

#define MSGQOBJ_NAME "/myqueue123"

#define MAX_MSG_LEN 70

printf("Usage: %s [-q] -p msg_prio\n“,

argv[0]);

exit(1);

}

}

if (create_queue) {

msgq_id = mq_open(MSGQOBJ_NAME,

O_RDWR | O_CREAT | O_EXCL, S_IRWXU |

S_IRWXG, NULL);

} else {

msgq_id = mq_open(MSGQOBJ_NAME,

int main(int argc, char *argv[]) {

mqd_t msgq_id;

unsigned int msgprio = 0;

pid_t my_pid = getpid();

char msgcontent[MAX_MSG_LEN];

int create_queue = 0;

char ch; /* for getopt() */

time_t currtime;

while ((ch = getopt(argc, argv, "qp:")) != -1) {

switch (ch) {

case 'q': create_queue = 1;

break;

case 'p': /msgprio = atoi(optarg);

break;

default:

msgq_id = mq_open(MSGQOBJ_NAME,

O_RDWR);

}

if (msgq_id == (mqd_t)-1) {

perror("In mq_open()");

exit(1);

}

currtime = time(NULL);

snprintf(msgcontent, MAX_MSG_LEN, "Hello from

process %u (at %s).", my_pid, ctime(&currtime));

mq_send(msgq_id, msgcontent, strlen(msgcontent)+1,

msgprio);

mq_close(msgq_id);

return 0;}
31

Message Queue Example - Receiver
Karoly.Bosa@jku.at

#include <stdio.h>

#include <mqueue.h> /* mq_* functions */

#include <stdlib.h> /* exit() */

#include <unistd.h> /* getopt() */

#include <string.h> /* strlen() */

#define MSGQOBJ_NAME "/myqueue123"

#define MAX_MSG_LEN 10000

int main(int argc, char *argv[]) {

mqd_t msgq_id;

printf("Queue \"%s\":\n\t- stores at most %ld

messages\n\t- large at most %ld bytes each\n\t-

currently holds %ld messages\n",

MSGQOBJ_NAME, msgq_attr.mq_maxmsg,

msgq_attr.mq_msgsize, msgq_attr.mq_curmsgs);

/* getting a message */

msgsz = mq_receive(msgq_id, msgcontent,

MAX_MSG_LEN, &sender);

if (msgsz == -1) {

perror("In mq_receive()");mqd_t msgq_id;

char msgcontent[MAX_MSG_LEN];

int msgsz;

unsigned int sender;

struct mq_attr msgq_attr;

msgq_id = mq_open(MSGQOBJ_NAME,

O_RDWR);

if (msgq_id == (mqd_t)-1) {

perror("In mq_open()");

exit(1);

}

mq_getattr(msgq_id, &msgq_attr);

perror("In mq_receive()");

exit(1);

}

printf("Received message (%d bytes) from %d:

%s\n", msgsz, sender, msgcontent);

mq_close(msgq_id);

return 0;

}

32

Notify Process That a Message Is Available (REALTIME)

Karoly.Bosa@jku.at

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

• If the argument notification is not NULL, this function shall register the calling

process to be notified of message arrival at an empty message queue mqdes.

• If notification is NULL and the process is currently registered for notification by

the specified message queue, the existing registration shall be removed.

33

• At any time, only one process may be registered for notification by a message

queue.

• The example program:

• Registers a notification request for the message queue named in its

command-line argument.

• Notification is performed by creating a thread.

• The thread executes a function which reads one message from the

queue and then terminates the process.

mq_notify Example
Karoly.Bosa@jku.at

#include <pthread.h>
#include <mqueue.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void /* Thread function */
tfunc(union sigval sv) {

struct mq_attr attr;
ssize_t nr;
void *buf;

free(buf);
exit(EXIT_SUCCESS); /* Terminate the process */

}

int main(int argc, char *argv[]) {
mqd_t mqdes;
struct sigevent not;

assert(argc == 2);
mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) -1) {

perror("mq_open");

34

void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

if (mq_getattr(mqdes, &attr) == -1) {
perror("mq_getattr");
exit(EXIT_FAILURE);

}
buf = malloc(attr.mq_msgsize);
nr = mq_receive(mqdes, buf, attr.mq_msgsize,

NULL);
if (nr == -1) {

perror("mq_receive");
exit(EXIT_FAILURE);

}
printf("Read %ld bytes from message
queue\n",(long) nr);

perror("mq_open");
exit(EXIT_FAILURE);

}

not.sigev_notify = SIGEV_THREAD;
not.sigev_notify_function = tfunc;
not.sigev_notify_attributes = NULL;
not.sigev_value.sival_ptr = &mqdes; /* Arg. to

thread*/
if (mq_notify(mqdes, ¬) == -1) {

perror("mq_notify");
exit(EXIT_FAILURE);

}
pause(); /* Process will be terminated by thread */

}

What Are Interthread Communications?
Karoly.Bosa@jku.at

• Since threads reside in the address space of their process, that communication

between threads seem not be difficult.

• The most important issue that has to be dealt with when peer threads require

communication with each other is synchronization.

• Communication between threads is used to:

• Share data

• Send a message• Send a message

• Threads cannot communicate with threads outside their process…

• …unless you are referring to primary threads of processes. In that case, you

refer to them as two processes.

• In most cases, the cost of Interprocess Communication is higher than

Interthread Communication.

35

The basic Interthread Communications
Karoly.Bosa@jku.at

36

Example for the Usage of Global Variables
Karoly.Bosa@jku.at

• Synchronization is missing!
• It is not guaranteed that the correct answer (165). 37

Parameters for Interthread Communication
Karoly.Bosa@jku.at

• The thread creation API supports thread parameters. The parameter is in

the form of a void pointer:

• The void pointer can be used to point to any kind of data type.

38

Example – Prg. 1.
Karoly.Bosa@jku.at

39

Example – Prg. 2.
Karoly.Bosa@jku.at

40

Compile and Link Instructions
Karoly.Bosa@jku.at

• c++ -o prg_arg prg_arg.cc thread_tasks.cc -lpthread

41

An Addition: Signals
Karoly.Bosa@jku.at

• A signal is a limited form of inter-process communication used in
Unix, Unix-like, and other POSIX-compliant operating systems.

• Essentially it is an asynchronous notification sent to a process in
order to notify it of an event that occurred.

• When a signal is sent to a process, the operating system interrupts
the process's normal flow of execution.the process's normal flow of execution.

• Execution can be interrupted during any non-atomic instruction.

• If the process has previously registered a signal handler, that
routine is executed. Otherwise the default signal handler is
executed.

42

Some POSIX.1 Signals
Karoly.Bosa@jku.at

SIGABRT
Abnormal termination signal caused by the abort()
function. A portable program should void catching
SIGABRT.

SIGALRM The timer set by the alarm() function has timed-out.

SIGINT
Interrupt special character typed on controlling
keyboard.

Termination signal. This signal cannot be caught or

43

SIGKILL
Termination signal. This signal cannot be caught or
ignored.

SIGPIPE Write to a pipe with no readers.

SIGQUIT Quit special character typed on controlling keyboard.

SIGTERM Termination signal.

SIGUSR1 Application-defined signal 1.

SIGUSR2 Application-defined signal 2.

Some POSIX.1 Signals 2 – Job Controls
Karoly.Bosa@jku.at

SIGCHLD
Child process terminated or stopped. By default, this

signal is ignored.

SIGCONT
Continue the process if it is currently stopped; otherwise,

ignore the signal.

SIGSTOP Stop signal. This signal cannot be caught or ignored.

44

SIGTSTP Stop special character typed on the controlling keyboard.

SIGTTIN
Read from the controlling terminal attempted by a

member of a background process group.

SIGTTOU
Write to controlling terminal attempted by a member of a

background process group

Example for Signals
Karoly.Bosa@jku.at

• Typing Ctrl-C sends an INT signal (SIGINT); by default, this causes the

process to terminate.

• Typing Ctrl-Z sends a TSTP signal (SIGTSTP); by default, this causes the

process to suspend execution.

• Typing Ctrl-\ sends a QUIT signal (SIGQUIT); by default, this causes the

process to terminate and dump core.process to terminate and dump core.

• The kill system call will send the specified signal to the process, if

permissions allow.

• The kernel can generate a signal to notify the process of an event. For

example, SIGPIPE will be generated when a process writes to a pipe

which has been closed by the reader.

45

Sending Signals and Signal Handlers
Karoly.Bosa@jku.at

• Processes send signals with the kill() function.

• A process may associate an handler function to a specific signal type with • A process may associate an handler function to a specific signal type with
the signal() function.

• A process can signal another process only if they belong to the same user.

• Processes run by a superuser can signal every process.

46

How the Signals Are Treated
Karoly.Bosa@jku.at

• For some of these signals, the OS inhibits custom handlers: SIGSTOP and

SIGKILL will always make the process respectively stop and die.

• Two standard handlers have been provided with the standard C library:

• SIG_DFL causing process termination, and

• SIG_IGN causing the signal to get ignored.

• When an handler fires for a signal, it won't be interrupted by other handlers

if more signals arrive.if more signals arrive.

• Signals are not queued (somehow, "best effort"). In order to notify signals,

the OS holds a bitmask for every process.

47

Block and Unblock Signal Delivery I.
Karoly.Bosa@jku.at

• The sigprocmask() call can be used to block and unblock delivery of signals

(in a single-threaded process).

• If the argument set is not a null pointer, it points to a set of signals to be • If the argument set is not a null pointer, it points to a set of signals to be

used to change the currently blocked set.

• The argument how indicates the way in which the set is changed:

• SIG_BLOCK: The resulting set will be the union of the current set and

the signal set pointed to by set.

• SIG_SETMASK The resulting set will be the signal set pointed to by

set.

• SIG_UNBLOCK The resulting set will be the intersection of the

current set and the complement of the signal set pointed to by set.

• If the argument oset is not a null pointer, the previous mask is stored in

the location pointed to by oset.

48

Block and Unblock Signal Delivery II.
Karoly.Bosa@jku.at

• The use of the sigprocmask() function is unspecified in a multi-threaded

process.

• The pthread_sigmask() function is used to examine or change (or both) the

calling thread's signal mask, regardless of the number of threads in the

process

• Question: Which thread receive the signal address to the process?

49

Signal Example
Karoly.Bosa@jku.at

#include <signal.h>

#include <pthread.h>

/*…*/

void signal_handler(int sig);

int main(int argc, char *argv[]) {

sigset_t set;

/* create signal processing thread */

pthread_create(&thread_id, NULL, signal_processor,

NULL);

// implementation of the signal processing thread

void *signal_processor(void *arg) {

sigset_t set;

signal(SIGHUP, &signal_handler);

signal(SIGINT, &signal_handler);

signal(SIGUSR1, &signal_handler);

sigfillset(&set);

for (;;) {

sigwait(&set, &sig);

50

NULL);

sigemptyset(&set);

sigaddset(&set, SIGHUP);

sigaddset(&set, SIGINT);

sigaddset(&set, SIGUSR1);

sigaddset(&set, SIGUSR2);

sigaddset(&set, SIGALRM);

/* block out these signals */

pthread_sigmask(SIG_BLOCK, &set, NULL);

/* ... */

return 0;

}

sigwait(&set, &sig);

switch(sig) {
case SIGTERM: exit(1);

default: printf("caught signal %d\n", sig);
}

}

...

}

void signal_handler(int sig) {

/*...*/

;

}

