
Introduction into Multicore
Programming

1

Programming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

Topic
Karoly.Bosa@jku.at

Multithreading

• What is a thread?

• User- and kernel- level thread models

• Thread Context

• Hardware threads

• Process vs. threads

• Thread attributes

• The architecture of a thread

• Creating Thread

2

• Creating Thread

• Joining and detaching thread

• Thread Id

• Cancellation and cancelability state

• Thread scheduling and priorities

• Contention scope

What Is a Thread?
Karoly.Bosa@jku.at

• A thread is a sequence or stream of executable code within a process
that is scheduled for execution by the operating system on a processor
or core.

• Threads execute independent concurrent tasks of a program.

• All processes have a primary thread.

3

• A process with multiple threads is multithreaded. Its each thread
executes independently and concurrently with its own sequence of
instructions.

• Threads use minimal resources shared in the address space of a single
process as compared to an application, which uses multiple processes.

User - and Kernel - Level Threads
Karoly.Bosa@jku.at

• There are three implementation models for threads:

• User- or application - level threads

• Kernel-level threads (different from kernel threads(!))

• Hybrid of user- and kernel-level threads

4

• The differences between them are the mode they exist in and the ability
of the threads to be assigned to a processor.

User-Level Thread Model
Karoly.Bosa@jku.at

5• User-level threads are considered a “many-to-one” thread mapping.

Kernel-level Thread Model
Karoly.Bosa@jku.at

6
• Kernel-level threads are considered a “one-to-one” thread mapping.

Hybrid Thread Model
Karoly.Bosa@jku.at

• With this implementation, a process has

its own pool of kernel threads.

• It uses a “many-to-many” thread

mapping.

7

• The pool of kernel threads is not

destroyed and re-created. These

threads are always in the system.

Thread Context
Karoly.Bosa@jku.at

• Threads also have a context.

• A context switch between

threads belonging to the same

process is also possible:

• A process shares much

with its threads,

8

• but some information is

local or unique to the

thread.

• The information unique or local

to a thread:

• thread id,

• processor registers,

• the state and priority and

• the thread-specific data

(TSD).

Hardware Threads and Software Threads
Karoly.Bosa@jku.at

• Threads can be implemented in hardware as well as software.

• Chip manufacturers implement cores that have multiple hardware threads that

serve as logical cores .

• Cores with multiple hardware threads are called simultaneous multithreaded

(SMT) cores.

• The logical cores are treated as unique processor cores by the operating

9

• The logical cores are treated as unique processor cores by the operating

system.

• Sun’s UltraSparc T1 and IBM’s Cell Broadband Engine CBE utilize SMT

implementing from two to four threads per core.

• Hyperthreading is Intel’s implementation of SMT in which its primary purpose is

to improve support for multithreaded code.

• Hyperthreading or SMT technology provides (real) parallel execution of threads

on a single processor core.

Thread Resources
Karoly.Bosa@jku.at

• Threads share most of their resources with other threads of the same
process.

• A thread can allocate additional resources such as files or mutexes, but
they are accessible to all the threads of the process.

• There are limits on the resources that can be consumed by a single
process.

10

process.

• When threads are utilizing their resources, they must be careful not to
leave them in an unstable state when they are canceled.

• Before it terminates, a thread should perform some cleanup, preventing
these unwanted situations from occurring.

Process vs. Thread: Context Switching
Karoly.Bosa@jku.at

• A process with multiple threads can provide concurrent execution of the
subtasks with less overhead for context switching.

• With low processor availability or a single core:

• Concurrently executing processes involve heavy overhead
because of the context switching.

11

• By using threads, a process context switch would occur only when
a thread from a different process is assigned the processor.

• Of course, if there are enough processors to go around, then context
switching is not an issue.

Process vs. Thread: Throughput
Karoly.Bosa@jku.at

• The throughput of an application can increase with multiple threads:

• With one thread, an I/O request would halt the entire process.

• With multiple threads, as one thread waits for an I/O request, the
application continues to execute.

12

application continues to execute.

• As one thread is blocked, another can execute. The entire application
does not wait for each I/O request to be filled

Process vs. Thread: Communication
Karoly.Bosa@jku.at

• Threads:

• They do not require special mechanisms for communication with other

threads of the process (peer threads).

• They communicate by using the memory shared within the address space

of the process.

• This saves system resources that would have to be used in the setup and

13

• This saves system resources that would have to be used in the setup and

maintenance of special communication mechanisms.

• Processes:

• They can also communicate by shared memory, but processes have

separate address spaces.

• The required shared memory must exist outside the address space of

both processes (e.g.: message queue).

• Setup of a message queue generally requires a lot of setup to work

properly.

Process vs. Thread: Corrupting Process Data
Karoly.Bosa@jku.at

• Threads:

• They can easily corrupt the data of a process.

• Without synchronization, threads write access to the same piece of data

can cause data race.

• Processes:

14

• Each process has its own data, and other processes don’t have access

unless special communication is set up.

• The separate address spaces of processes protect the data from possible

inadvertent corruption by other processes.

Process vs. Thread: Errors
Karoly.Bosa@jku.at

• Errors caused by a thread are more costly than errors caused by
processes.

• Foe instance, If a thread causes a fatal access violation, this may result
in the termination of the entire process.

• Threads can create data errors that affect the entire memory space of all
the peer threads.

15

the peer threads.

• Processes are isolated. A process can have an access violation that
causes the process to terminate, but all of the other processes continue
executing.

• Data errors can be restricted to a single process.

Process vs. Thread: Similarities
Karoly.Bosa@jku.at

• Threads and child processes share (some) resources of their parent process

without requiring additional initialization or preparation.

• As kernel entities, threads and processes compete for processor usage.

• The parent process has some control over the child process or thread. It can:

• Cancel

• Suspend

• Resume

16

• Resume

• Change the priority

Process vs. Thread: Relationships
Karoly.Bosa@jku.at

• Processes:

• They can exercise control over other processes with which they have a

parent-child relationship.

• Changes to the parent process do not affect child processes.

• Threads:

17

• Peer threads are on an equal level regardless of who created them.

• Any thread that has access to the thread id of another peer thread can

cancel, suspend, resume, or change the priority of that thread.

• Any thread within a process can kill the process

• by canceling the primary thread,

• by terminating all the threads of the process.

• Any changes to the main thread may affect all the threads of the process.

Thread Attributes I.
Karoly.Bosa@jku.at

• Information about the thread used to determine the context of the thread.

• What makes peer threads unique from one another is the id, the state (set of

registers) the priority, and the stack.

• The POSIX thread library defines a thread attribute object that encapsulates a

subset of the properties:

• Contention scope

18

• Contention scope

• Stack size

• Stack address

• Detached state

• Priority

• Scheduling policy and parameters

• These attributes are accessible and modifiable by the creator of the thread.

• A thread attribute object can be associated with one or multiple threads.

• Once a thread has been created using a thread attribute object, most attributes

cannot be changed while the thread is in use.

Thread Attributes II. - Contention Scope
Karoly.Bosa@jku.at

• Contention Scope attribute describes which threads competes each other for

resources. There are two kinds of contention scopes:

• Process scope: compete with threads within the same process.

• System scope: compete for resources with threads of other processes

allocated across the system.

• A thread that has system scope is prioritized and scheduled with respect to all of

19

• A thread that has system scope is prioritized and scheduled with respect to all of

the process wide threads.

• Contention scope can potentially impact on the performance of your application:

• The process scheduling model potentially provides lower overhead for

making scheduling decisions.

• On the other hand system wide threads gets CPU time slice more often.

Thread Attributes III. - Stack Size and Location
Karoly.Bosa@jku.at

• The thread’s stack size and location are set when the thread is created.

• If not explicitly given, a default stack size and location are assigned by the

system.

• The thread’s stack size must be large enough:

• for any function calls;

• for any code external to the process, such as library code, called by the

20

• for any code external to the process, such as library code, called by the

thread;

• for local variable storage.

• A process with multiple threads should have a stack segment large enough for

all of its thread’s stacks.

• If you specify location and size: the important things is how much space the

thread requires and to ensure that the location does not overlap other peer

thread’s stacks.

Thread Attributes IV. – Detached State
Karoly.Bosa@jku.at

• Detached threads are threads that have become detached from their creator.

• They are not synchronized with other peer threads or the primary thread when it

terminates or exits.

• The process or thread that created them gives up any control over them.

• If the thread is detached, once the thread is terminated, no resources are used

to save the status or thread id.

21

to save the status or thread id.

• Use detached threads:

• If it is not necessary for the creator of the thread to wait until it terminates

or

• if a thread does not require any type of synchronization with other peer

threads once terminated.

Thread Attributes V. – Priority and Scheduling I.
Karoly.Bosa@jku.at

• Threads always have a priority,

• The thread with the highest priority is executed before threads with lower

priority.

• Executing threads are preempted if a thread of higher priority (and the

same contention scope) is available.

• The threads inherit scheduling attributes from the process.

22

• The threads inherit scheduling attributes from the process.

• FIFO, round robin (RR), and other scheduling policies are available.

• In general, it is not necessary to change the scheduling attributes of the thread

during process execution.

• Changing the scheduling attributes can have a negative impact on the overall

performance of the application.

The Architecture of a Thread
Karoly.Bosa@jku.at

• t

23

Thread States
Karoly.Bosa@jku.at

• A thread state is the mode or condition in which a thread is at any given time.

• Threads have the same states and transitions as processes.

• Commonly implemented states e.g.:

• Runnable

• Running (active)

• Stopped

• Sleeping (blocked)

24

• Sleeping (blocked)

• Typical transitions e.g.:

• Preempt

• Signaled

• Dispatch

• If one thread is active (runnable or running), then the process is considered

active.

A Simple Threaded Program
Karoly.Bosa@jku.at

using namspace std;

#include < iostream >

#include < pthread.h >

//define task to be executed by ThreadA

void *task1(void *X) {

cout < < “Thread A complete” < < endl;

return (NULL);

}

//define task to be executed by ThreadB

void *task2(void *X) {

25

void *task2(void *X) {

cout < < “Thread B complete” < < endl;

return (NULL);

}

int main(int argc, char *argv[]) {

// declare threads

pthread_t ThreadA,ThreadB;

// create threads

pthread_create(& ThreadA,NULL,task1,NULL);

pthread_create(& ThreadB,NULL,task2,NULL);

// additional processing …

pthread_join(ThreadA,NULL); // wait for threads

pthread_join(ThreadB,NULL);

return (0);

}

Compiling and Linking Threaded Programs
Karoly.Bosa@jku.at

• All multithreaded programs using the POSIX thread library must include this

header:
< pthread.h >

• For compiling, we must link the pthread library to our application using the –l

compiler switch:

-lpthread

• The pthread library, libpthread.so, should be located in the directory where the

26

• The pthread library, libpthread.so, should be located in the directory where the

system stores its standard library, usually /usr/lib.

• So the compilation line would look like the following:

g++ -o a.out test_thread.cpp -lpthread

• If the library is not located in a standard location, use the - L option to make the

compiler look in a particular directory before searching the standard locations:

g++ -o a.out -L /src/local/lib test_thread.cpp -lpthread

Creating Threads
Karoly.Bosa@jku.at

• Threads can be created any time during the execution of a process because

they are dynamic.

• The thread parameter points to a thread handle or thread id of the thread to be

27

• The thread parameter points to a thread handle or thread id of the thread to be

created.

• The new thread has the attributes specified by the attribute object attr.

• The thread executes the instructions in start_routine with the arguments specified

by arg.

• If the function successfully creates the thread, it returns the thread id and stores

the value in thread parameter.

Passing Arguments to a Thread
Karoly.Bosa@jku.at

28

• If it is necessary to pass multiple arguments to the thread function, you can

create a struct with all the required arguments and pass a pointer to that

structure to the thread function.

Joining Threads
Karoly.Bosa@jku.at

• pthread_join() is used to join or rejoin flows of control in a process.

• pthread_join() causes the calling thread to suspend its execution until the target

thread has terminated:

• It can be called either by the creator of a thread

29

• It can be called either by the creator of a thread

• or by peer threads if the thread handle is global.

• The thread parameter is the id of the target thread.

• If the target thread returns successfully, its exit status is stored in value_ptr.

• There should be a pthread_join() function called for all joinable threads.

• Behavior is undefined if different peer threads simultaneously call the

pthread_join() function on the same thread.

Getting the Thread Id
Karoly.Bosa@jku.at

• It returns the thread id of the calling thread, e.g.:

pthread_t ThreadId;

ThreadId = pthread_self();

• Once the thread has its own id, it can be passed to other threads in the process.

30

• Once the thread has its own id, it can be passed to other threads in the process.

• The thread id is also returned to the calling thread of pthread_create()

Comparing Thread Ids
Karoly.Bosa@jku.at

• Thread ids can be compared but not by using the normal comparison operators.

• You can determine whether two thread ids are equivalent by calling
pthread_equal().

• It returns a nonzero value if the two thread ids reference the same thread.

31

• It returns a nonzero value if the two thread ids reference the same thread.

• If they reference different threads, it returns zero.

Using the Pthread Attribute Object
Karoly.Bosa@jku.at

• Threads have a set of attributes that can be specified at the time that the
thread is created.

• The set of attributes is encapsulated in an structure whose type is
pthread_attr_t.

• This structure can be used to set the following thread attributes:
• Size of the thread’s stack

32

• Size of the thread’s stack

• Location of the thread’s stack

• Scheduling inheritance, policy, and parameters

• Whether the thread is detached or joinable

• Scope of the thread

Methods Used to Query and to Set the Attribute
Karoly.Bosa@jku.at

33

Initialize and Destroy Thread Attrbibutes
Karoly.Bosa@jku.at

• The pthread_attr_init() initializes a thread attribute object with the default values

for all the attributes.

• Once attr has been initialized, its attribute values can be changed by using the

pthread_attr_set functions listed before.

34

pthread_attr_set functions listed before.

• The pthread_attr_destroy() function can be used to destroy a pthread_attr_t object

specified by attr.

• A call to this function deletes any hidden storage associated with the thread

attribute object.

Default Values for the Attribute Object
Karoly.Bosa@jku.at

35

• If a value is not supported its function returns an error number, for instance in

Linux environments PTHREAD_SCOPE_PROCESS is not supported, e.g.:

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope)

Creating Detached Threads Using the Pthread Attribute Object

Karoly.Bosa@jku.at

• If an exiting thread is not joined with another thread, the exiting thread is said to

be detached.

• A pthread_join() cannot be used on a detached thread. If it is used, it returns an

36

• A pthread_join() cannot be used on a detached thread. If it is used, it returns an

error.

• The pthread_attr_setdetachstate() function can be used to set the detachstate

attribute of the attribute object.

• The detachstate parameter describes the thread as detached or joinable. The

detachstate can have one of these values:

• PTHREAD_CREATE_DETACHED

• PTHREAD_CREATE_JOINABLE

• The pthread_attr_getdetachstate() function returns the detachstate of the

attribute object.

pthread_detach and an Example
Karoly.Bosa@jku.at

• Threads that are already running can become detached by pthread_detach().

37

Terminating Threads
Karoly.Bosa@jku.at

• A thread’s execution can be discontinued by several means:

• By returning from the execution of its assigned task with or without an exit

status or return value

• By explicitly terminating itself and supplying an exit status

• By being canceled by another thread in the same address space.

38

• A thread can (explicitly) self-terminate by calling pthread_exit().

• When the terminating thread calls pthread_exit(), it is passed the exit status in
value_ptr.

• The exit status is returned to pthread_join().

Terminating Peer Threads
Karoly.Bosa@jku.at

• pthread_cancel() create a request to cancel/terminate peer threads. The request

can be

• granted immediately,

• granted at a later time or

• even ignored.

39

• even ignored.

• The thread parameter is the thread to be canceled.

The Cancellability State and the Cancelability Type I.
Karoly.Bosa@jku.at

• The cancel type and cancel state of the target thread determines when

cancellation actually takes place:

• The cancelability state describes the cancel condition of a thread as

being cancelable or uncancelable.

• A thread’s cancelability type determines the thread’s ability to continue

after a cancel request.

40

• The cancelability state and type are dynamically set by the thread itself.

• pthread_setcancelstate() and pthread_setcanceltype() are used to set the

cancelability state and type of the calling thread.

The Cancellability State and the Cancellability Type II.
Karoly.Bosa@jku.at

41

• pthread_testcancel() does nothing except process a pending cancellation in a

synchronously cancellable thread.

• Certain other functions are implicitly cancellation points as well. These are listed
on the pthread_cancel() man page (e.g.: pthread_join()).

Cancellation Example
Karoly.Bosa@jku.at

42

• In Example, cancellation is set to take place immediately.

• So, the thread can open the file and be canceled while it is writing to the file

(dangerous and bad practice).

Cancellation Points Example I.
Karoly.Bosa@jku.at

• A cancellation point is a checkpoint where a thread checks if there are any

cancellation requests pending and, if so, concedes to termination.

43

Cancellation Points Example II.
Karoly.Bosa@jku.at

• The pthread_join() function does not

fail if it attempts to join with a thread

that has already been terminated.

• A canceled thread may return an

exit status PTHREAD_CANCELED.

44

Cancellation-Safe Library Functions
Karoly.Bosa@jku.at

• The pthread library defines functions that can serve as cancellation points and

are considered asynchronous cancellation-safe functions.

• These functions block the calling thread, and while the calling thread is blocked,

it is safe to cancel the thread.

• These are the pthread library functions that act as cancellation points:

• pthread_testcanel()

45

• pthread_cond_wait()

• pthread_timedwait

• pthread_join()

System Calls as Cancellation Points
Karoly.Bosa@jku.at

• Some of the POSIX system calls that are required to be cancellation
points (e.g.: connect(), accept(), sleep(), system(), read(), write, etc.).

• These POSIX functions are safe to be used as deferred cancellation
points, but they may not be safe for asynchronous cancellation.

46

• A library call that is not asynchronously safe that is canceled during
execution can cause library data to be left in an incompatible state.

Cleaning Up before Termination I.
Karoly.Bosa@jku.at

• We mentioned earlier that a thread may need to perform some final processing

before it is terminated.

• A cleanup stack is associated with every thread which contains pointers to

routines that are to be executed during the cancellation process.

47

• The function pushes a pointer to the routine to the cleanup stack.

• The function routine is called with the arg parameter when the thread exits

under these circumstances:
• When calling pthread_exit(),

• When the thread concedes to a termination request and

• When the thread explicitly calls pthread_cleanup_pop() with a nonzero value

for execute.

Cleaning Up before Termination II.
Karoly.Bosa@jku.at

• The pthread_cleanup_pop() removes routine’s pointer from the top of the calling

thread’s cleanup stack.

• The execute parameter can have a value of 1 or 0:

• If 1 , the thread executes routine even if it is not being terminated. The thread

48

• If 1 , the thread executes routine even if it is not being terminated. The thread

continues execution from the point after the call to this function.

• If the value is 0 , the pointer is removed from the top of the stack without

executing.

• For each push, there needs to be a

pop if the clean up routine become

obsolete (because the relevant code

part finished its activity).

Setting Thread Scheduling and Priorities I.
Karoly.Bosa@jku.at

• The scheduling policy of a thread or group of threads can be set by an attribute

object using these functions:

49

• pthread_attr_setinheritsched() is used to determine how the thread’s scheduling

attributes are set, by inheriting the scheduling attributes either from the creator

thread or from an attribute object.

• inheritsched can have one of these values:

• PTHREAD_INHERIT_SCHED : Thread scheduling attributes are inherited
from the creator thread, and any scheduling attributes of the attr are

ignored.

• PTHREAD_EXPLICIT_SCHED :Thread scheduling attributes are set to
the scheduling attributes of the attribute object attr.

Setting Thread Scheduling and Priorities II.
Karoly.Bosa@jku.at

• The scheduling policy of a thread or group of threads can be set by an attribute

object using these functions:

50

• pthread_attr_setschedpolicy() sets the scheduling policy of the thread attribute

object attr.

• policy value can be one of the following defined in the <sched.h> header:

• SCHED_FIFO : First-In, First-Out scheduling,

• SCHED_RR Round robin scheduling and

• SCHED_OTHER : Another scheduling policy (implementation - defined).

By default, this is the scheduling policy of any newly created thread.

Setting Thread Scheduling and Priorities III.
Karoly.Bosa@jku.at

• The scheduling policy of a thread or group of threads can be set by an attribute

object using these functions:

51

• pthread_attr_setschedparam() to set the scheduling parameters of the attribute

object attr used by the scheduling policy.

• param is a structure that contains the parameters. The sched_param structure

has at least this data member defined:

struct sched_param {

int sched_priority;

//...

};

Query the Priority Interval
Karoly.Bosa@jku.at

• Both functions are passed the scheduling policy policy for which the priority

values are requested, and

• Both return either the maximum or minimum priority values for the scheduling

policy.

52

policy.

Example : Setting the scheduling policy and priority of a thread.

Karoly.Bosa@jku.at

53

With these methods, the

scheduling policy and

priority are set in the thread

attribute object before the

thread is created or running.

Dynamically Changing the Scheduling Policy and Priority

Karoly.Bosa@jku.at

• pthread_setschedparam() sets both the scheduling policy and priority of a thread

directly without the use of an attribute object.

54

• The pthread_getschedparam() returns the scheduling policy and scheduling

parameters.

• The pthread_setschedprio() is used to set the scheduling priority of an executing

thread.

Setting Contention Scope of a Thread
Karoly.Bosa@jku.at

• The contention scope of the thread determines which set of threads a thread

competes with for processor usage (systemwide).

• The contention scope of a thread is set by the thread attribute object.

55

• The pthread_attr_setscope() sets the contention scope property of the thread

attribute object specified by attr.

• contentionscope can have these values:

• PTHREAD_SCOPE_SYSTEM : System scheduling contention scope

• PTHREAD_SCOPE_PROCESS : Process scheduling contention scope

• pthread_attr_getscope() returns the contention scope attribute from the thread

attribute object specified by the attr .

Using sysconf() I.
Karoly.Bosa@jku.at

56
For instance: if (PTHREAD_STACK_MIN == (sysconf(_SC_THREAD_STACK_MIN))){ //... }

Using sysconf() II.
Karoly.Bosa@jku.at

57

Thread Safety and Libraries
Karoly.Bosa@jku.at

• A computer program or routine is described as reentrant if it can be safely

called again before its previous invocation has been completed.

• A library is thread safe or reentrant when its functions may be called by more

than one thread at a time (and work correctly) without requiring any other action.

• If the functions are not thread safe, then this means the functions:

• Contain static variables

• Access global data

58

• Access global data

• Are not reentrant

• The POSIX standard defines several functions as reentrant. They are easily

identified by a _r attached to the function name of the non-reentrant counterpart

(e.g.: getgrgid_r(), getgrnam_r(), getpwuid_r(), sterror_r(), etc.).

