Introduction into Multicore
Programming

Karoly Bosa
(Karoly.Bosa@ijku.at)

Research Institute for Symbolic Computation
(RISC)

Topic

I Karoly.Bosa@ jku.at

Multithreading
« What is a thread?
« User- and kernel- level thread models
« Thread Context
« Hardware threads
« Process vs. threads
« Thread attributes
The architecture of a thread
« Creating Thread
« Joining and detaching thread
« Threadld
« Cancellation and cancelability state
« Thread scheduling and priorities
« Contention scope

What Is a Thread?

I Karoly.Bosa@ jku.at

« Athread is a sequence or stream of executable code within a process
that is scheduled for execution by the operating system on a processor
or core.

« Threads execute independent concurrent tasks of a program.

« All processes have a primary thread.

« A process with multiple threads is multithreaded. Its each thread
executes independently and concurrently with its own sequence of

instructions.

« Threads use minimal resources shared in the address space of a single
process as compared to an application, which uses multiple processes.

User - and Kernel - Level Threads

I Karoly.Bosa@ jku.at

» There are three implementation models for threads:
« User- or application - level threads
« Kernel-level threads ()
« Hybrid of user- and kernel-level threads

« The differences between them are the mode they exist in and the ability
of the threads to be assigned to a processor.

User-Level Thread Model

I Karoly.Bosa @ jku.at
| UseRsPacE |
= | KERNEL SPACE |
[0s
USER . SCHEDULER
THREAD 1
|
USER
PROCESS A :l—‘—.\
THREAD 2 | -..,__
THREAD 1
e | BN
| COREO CORE1

THREAD 3
KERNEL
| / THREAD 2 KT1 KT2
USER | . / Tunning running
THREAD 4 | ¥ﬁ§:§h :

PROCESS B
USER /
THREAD 5

PROCESSC| | Tumeane

i

 User-level threads are considered a “many-to-one” thread mapping. 5

Kernel-level Thread Model

I Karoly.Bosa@ jku.at

USER SPACE
DT e sovce |

| 0s
USER SCHEDULER
THREAD 1 i—!—.-\
e W KERNEL
| THREAD 1

PROCESSA| | Threnn2 -
B
THREAD 3 | '--...._ CORE 0 CORE 1

THREAD 3 KT2 KT3

|
e - e N
|
USER :
THREAD 5 i

|
USER KERNEL
PROCESSC| | USER THREAD 6

PROCESS B

« Kernel-level threads are considered a “one-to-one” thread mapping.

Hybrid Thread Model

Karoly.Bosa@ jku.at

PROCESS A

PROCESS B

USER
THREAD 1

USER
THREAD 2

USER
THREAD 3

USER
THREAD 1

USER
THREAD 2

USER
THREAD 3

USER
THREAD 4

USER
THREAD 5

0s
SCHEDULER

THREAD POOL

KERNEL
THREAD 1

KERNEL
THREAD 2

KERNEL
THREAD 3

KERNEL
THREAD 4

KERNEL

il

THREAD 5

N\
S

With this implementation, a process has
its own pool of kernel threads.

It uses a “many-to-many” thread
mapping.

CORE 0
KT2

running

CORE 1
KT4

running

The pool of kernel threads is not
destroyed and re-created. These
threads are always in the system.

Thread Context

I Karoly.Bosa@ jku.at
o Content of Context Process Thread
Threads also have a context.
Pointer to executable X
A context switch between Stack . .
threads t,)elongmg tO the same Memory (data segment and heap) X
process is also possible: S
tate X X
« A process shares much Priority X X
with its threads, Status of program [/0 X
Granted privileges X
e but some information is Scheduling information X
local or Unique to the Accounting information X
thread. Information pertaining to resources X
_ . . + File descriptors
« The information unique or local o
* Read/write pointers
to a thread: ‘ N _
e thread id Information pertaining to events and signals x
, Register set X X

* processor registers,

 the state and priority and

 the thread-specific data
(TSD).

+ Stack pointer

+ [nstruction counter

» Andsoon

Hardware Threads and Software Threads

I Karoly.Bosa@ jku.at

Threads can be implemented in hardware as well as software.

Chip manufacturers implement cores that have multiple hardware threads that
serve as logical cores .

Cores with multiple hardware threads are called simultaneous multithreaded
(SMT) cores.

The logical cores are treated as unique processor cores by the operating
system.

Sun’s UltraSparc T1 and IBM’s Cell Broadband Engine CBE utilize SMT
implementing from two to four threads per core.

Hyperthreading is Intel’s implementation of SMT in which its primary purpose is
to improve support for multithreaded code.

Hyperthreading or SMT technology provides (real) parallel execution of threads

on a single processor core.
9

Thread Resources

I Karoly.Bosa@ jku.at

 Threads share most of their resources with other threads of the same
process.

 Athread can allocate additional resources such as files or mutexes, but
they are accessible to all the threads of the process.

« There are limits on the resources that can be consumed by a single
process.

« When threads are utilizing their resources, they must be careful not to
leave them in an unstable state when they are canceled.

« Before it terminates, a thread should perform some cleanup, preventing
these unwanted situations from occurring.

10

Process vs. Thread: Context Switching

I Karoly.Bosa@ jku.at

» A process with multiple threads can provide concurrent execution of the
subtasks with less overhead for context switching.

« With low processor availability or a single core:

« Concurrently executing processes involve heavy overhead
because of the context switching.

« By using threads, a process context switch would occur only when
a thread from a different process is assigned the processor.

« Of course, if there are enough processors to go around, then context
switching is not an issue.

11

Process vs. Thread: Throughput

I Karoly.Bosa@ jku.at

« The throughput of an application can increase with multiple threads:

« With one thread, an I/O request would halt the entire process.

« With multiple threads, as one thread waits for an I/O request, the
application continues to execute.

« As one thread is blocked, another can execute. The entire application
does not wait for each I/O request to be filled

12

Process vs. Thread: Communication

I Karoly.Bosa@ jku.at

 Threads:

« They do not require special mechanisms for communication with other
threads of the process (peer threads).

« They communicate by using the memory shared within the address space
of the process.

» This saves system resources that would have to be used in the setup and
maintenance of special communication mechanisms.

 Processes:

» They can also communicate by shared memory, but processes have
separate address spaces.

» The required shared memory must exist outside the address space of
both processes (e.g.: message queue).

» Setup of a message queue generally requires a lot of setup to work 13
properly.

Process vs. Thread: Corrupting Process Data

I Karoly.Bosa@ jku.at

« Threads:
» They can easily corrupt the data of a process.

« Without synchronization, threads write access to the same piece of data
can cause data race.

 Processes:

« Each process has its own data, and other processes don’t have access
unless special communication is set up.

» The separate address spaces of processes protect the data from possible
inadvertent corruption by other processes.

14

Process vs. Thread: Errors

I Karoly.Bosa@ jku.at

» Errors caused by a thread are more costly than errors caused by
processes.

» Foe instance, If a thread causes a fatal access violation, this may result
in the termination of the entire process.

« Threads can create data errors that affect the entire memory space of all
the peer threads.

* Processes are isolated. A process can have an access violation that
causes the process to terminate, but all of the other processes continue
executing.

« Data errors can be restricted to a single process.

15

Process vs. Thread: Similarities

I Karoly.Bosa@ jku.at

« Threads and child processes share (some) resources of their parent process
without requiring additional initialization or preparation.

» As kernel entities, threads and processes compete for processor usage.

« The parent process has some control over the child process or thread. It can:
« Cancel
« Suspend
 Resume
« Change the priority

16

Process vs. Thread: Relationships
[. Karoly.Bosa @ j ku.at

 Processes:

« They can exercise control over other processes with which they have a
parent-child relationship.

« Changes to the parent process do not affect child processes.

« Threads:

» Peer threads are on an equal level regardless of who created them.

« Any thread that has access to the thread id of another peer thread can
cancel, suspend, resume, or change the priority of that thread.

« Any thread within a process can kill the process
« by canceling the primary thread,
« by terminating all the threads of the process.

* Any changes to the main thread may affect all the threads of the process.
17

Thread Attributes .

I Karoly.Bosa@ jku.at

Information about the thread used to determine the context of the thread.

What makes peer threads unique from one another is the id, the state (set of
registers) the priority, and the stack.

The POSIX thread library defines a thread attribute object that encapsulates a
subset of the properties:

Contention scope

Stack size

Stack address

Detached state

Priority

Scheduling policy and parameters

These attributes are accessible and modifiable by the creator of the thread.

A thread attribute object can be associated with one or multiple threads.

Once a thread has been created using a thread attribute object, most attributes
cannot be changed while the thread is in use.

Thread Attributes Il. - Contention Scope

I Karoly.Bosa@ jku.at

« Contention Scope attribute describes which threads competes each other for
resources. There are two kinds of contention scopes:

* Process scope: compete with threads within the same process.

« System scope: compete for resources with threads of other processes
allocated across the system.

« Athread that has system scope is prioritized and scheduled with respect to all of
the process wide threads.

« Contention scope can potentially impact on the performance of your application:

« The process scheduling model potentially provides lower overhead for
making scheduling decisions.

* On the other hand system wide threads gets CPU time slice more often.

19

Thread Attributes Illl. - Stack Size and Location

I Karoly.Bosa@ jku.at

 The thread’s stack size and location are set when the thread is created.

 If not explicitly given, a default stack size and location are assigned by the
system.

« The thread’s stack size must be large enough:
 for any function calls;

« for any code external to the process, such as library code, called by the
thread;

 for local variable storage.

« A process with multiple threads should have a stack segment large enough for
all of its thread’s stacks.

 |If you specify location and size: the important things is how much space the
thread requires and to ensure that the location does not overlap other peer

thread’s stacks.
20

Thread Attributes IV. — Detached State

I Karoly.Bosa@ jku.at

 Detached threads are threads that have become detached from their creator.

« They are not synchronized with other peer threads or the primary thread when it
terminates or exits.

« The process or thread that created them gives up any control over them.

* If the thread is detached, once the thread is terminated, no resources are used
to save the status or thread id.

« Use detached threads:
 If it is not necessary for the creator of the thread to wait until it terminates
or
« if a thread does not require any type of synchronization with other peer
threads once terminated.

21

Thread Attributes V. — Priority and Scheduling I.

I Karoly.Bosa@ jku.at

« Threads always have a priority,

« The thread with the highest priority is executed before threads with lower
priority.

» Executing threads are preempted if a thread of higher priority (and the
same contention scope) is available.

« The threads inherit scheduling attributes from the process.
* FIFO, round robin (RR), and other scheduling policies are available.

* In general, it is not necessary to change the scheduling attributes of the thread
during process execution.

« Changing the scheduling attributes can have a negative impact on the overall
performance of the application.

22

The Architecture of a Thread

Karoly.Bosa@ jku.at

SCOPE = Process

detach = joinable

| Thread ID

| 345

stack size = 1000
priority = 2

N Thread ID
| 457

PROCESS'S ADDRESS SPACE
PROCESS CONTROL BLOCK
STACK SEGMENT
_— ThreadA'sstack
SP task2()
PC — Count A
—
Reqisters il sk
SP 1 task1()
PC CountB
—1
main()
DATA SEGMENT
X
b

TEXT SEGMENT

...

int X, Y;

main()

{
.ll.ll...
pthread_attr_t Attr;
pthread_t ThreadA, ThreadB;

pthread_attr_init{£AttrObj);
pthread_create(& ThreadA, &Attr.task1,NULL);
E:ihread_creai-:—[& ThreadB, &Attr,task2 NULL);
[

pthread_join{ThreadA NULL);
pthread_join({ThreadB, NULL);

1
vioid task1(...)
i
fl...
Counth = 10;

fl...

H
vioid task2|...)
i

fl...
CountE = 100

..

]

Thread States

I Karoly.Bosa@ jku.at

A thread state is the mode or condition in which a thread is at any given time.
Threads have the same states and transitions as processes.

Commonly implemented states e.qg.:
* Runnable
» Running (active)
» Stopped
« Sleeping (blocked)

Typical transitions e.g.:
* Preempt
« Signaled
» Dispatch

If one thread is active (runnable or running), then the process is considered
active.

24

A Simple Threaded Program

Karoly.Bosa@ jku.at

using namspace std;
#include < 1ostream >
#include < pthread.h >

//define task to be executed by Thread A
void *task1(void *X) {

Main Thread

cout < < “Thread A complete” < < endl;
return (NULL);

}

//define task to be executed by ThreadB

void *task2(void *X) {
cout < < “Thread B complete” < < endl;
return (NULL);

}

int main(int argc, char *argv[]) {
/] declare threads
pthread_t ThreadA,ThreadB;
// create threads
pthread_create(& Thread A,NULL,task1,NULL);
pthread_create(& ThreadB,NULL,task2,NULL);
/[additional processing ...
pthread_join(ThreadA,NULL); // wait for threads
pthread_join(ThreadB,NULL);
return (0);

1

<< Create ==

<< Create ==

L

ThreadA

1

| —

L << JOIN ==

<< join >>

ThreadB

1

25

Compiling and Linking Threaded Programs

I Karoly.Bosa@ jku.at

All multithreaded programs using the POSIX thread library must include this
header:
< pthread.h >

For compiling, we must link the pthread library to our application using the -/
compiler switch:
-Ipthread

The pthread library, libpthread.so, should be located in the directory where the
system stores its standard library, usually /usr/lib.

So the compilation line would look like the following:
g++ -0 a.out test_thread.cpp -lpthread

If the library is not located in a standard location, use the - L option to make the
compiler look in a particular directory before searching the standard locations:

g++ -0 a.out -L /src/local/lib test_thread.cpp -1pthread
26

Creating Threads

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread create(pthread t *restrict thread, const pthread attr_ t *restrict attr,
void * (*start_routine) (void*), wvoid *restrict arg);

« Threads can be created any time during the execution of a process because
they are dynamic.

» The thread parameter points to a thread handle or thread id of the thread to be
created.

« The new thread has the attributes specified by the attribute object atrr.

« The thread executes the instructions in start_routine with the arguments specified
by arg.

« If the function successfully creates the thread, it returns the thread id and stores
the value in thread parameter.

27

00 =] oy N o L B =

Passing Arguments to a Thread

Karoly.Bosa@ jku.at

using namespace std;

$include <iostream=
#include <pthread.h>

volid *taskl(vold *X)

{

int *Temp;
Temp = static_cast<int *>(¥);

for(int Count = 0;Count < *Temp;Count++)

{

cout << "work from thread: " << Count << endl;

}

cout << "Thread complete" << endl;
return (NULL) ;

int main{int argc, char *argv([])
{
int N;

pthread t MyThreads[10];

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54}

if{argc 1= 2){
cout << "error" << endl;
exit (1);

}

N = atoi(argv[l]);

ift(N > 10){
N = 10;
}

for(int Count = 0;Count < NW;Count++)
{
pthread create(&MyThreads [Count] , NULL, taskl, &N) ;

for(int Count = 0;Count < IN;Count++)

{
pthread_join (MyThreads [Count] ,NULL} ;

}
return(0);

If it is necessary to pass multiple arguments to the thread function, you can
create a struct with all the required arguments and pass a pointer to that

structure to the thread function.

Joining Threads

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread join(pthread t thread, wvoid **value ptr);
« pthread_join() is used to join or rejoin flows of control in a process.
« pthread_join() causes the calling thread to suspend its execution until the target
thread has terminated:
» It can be called either by the creator of a thread
» or by peer threads if the thread handle is global.
» The thread parameter is the id of the target thread.

 |f the target thread returns successfully, its exit status is stored in value_ptr.

 There should be a pthread join() function called for all jpinable threads.

« Behavior is undefined if different peer threads simultaneously call the
pthread_join() function on the same thread. 29

Getting the Thread Id

I Karoly.Bosa@ jku.at

#include <pthread.h>

pthread t pthread_self(void);
* It returns the thread id of the calling thread, e.g.:

pthread_t Threadld;
Threadld = pthread_self();

« Once the thread has its own id, it can be passed to other threads in the process.

« The thread id is also returned to the calling thread of pthread_create()

30

Comparing Thread Ilds

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread_equal (pthread_t tidl, pthread t tid2);

« Thread ids can be compared but not by using the normal comparison operators.

* You can determine whether two thread ids are equivalent by calling
pthread_equal().

* |t returns a nonzero value if the two thread ids reference the same thread.

 If they reference different threads, it returns zero.

31

Using the Pthread Attribute Object

I Karoly.Bosa@ jku.at

Threads have a set of attributes that can be specified at the time that the
thread is created.

The set of attributes is encapsulated in an structure whose type is
pthread_attr _t.

This structure can be used to set the following thread attributes:

Size of the thread’s stack

Location of the thread'’s stack

Scheduling inheritance, policy, and parameters
Whether the thread is detached or joinable

Scope of the thread

32

Methods Used to Query and to Set the Attribute

Karoly.Bosa@ jku.at

Types of Attribute Functions

pthread Attribute Functions

Initialization

Stack management

Detach state

Contention scope

Scheduling inheritance

Scheduling policy

Scheduling parameters

pthread_attr_init()
pthread_attr_destroyi()

pthread_attr_setstacksize()
pthread_attr_getstacksize()
pthread_attr_ setguardsize()
pthread_attr_getguardsize()
pthread_attr_setstack()

pthread_attr_getstack()

pthread_attr_setstackaddr ()
pthread_attr_ getstackaddr ()

pthread_attr_setdetachstate()
pthread_attr_getdetachstate()

pthread_attr_setscope()
pthread_attr_getscope()

pthread_attr_ setinheritsched()
pthread_attr_getinheritsched()

pthread_attr_setschedpolicy()
pthread_attr_getschedpolicy ()

pthread_attr_setschedparam()
pthread_attr_getschedparam()

33

Initialize and Destroy Thread Attrbibutes

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread attr init(pthread attr_t *attr);
int pthread attr destroy(pthread attr_t *attr);

« The pthread_attr_init() initializes a thread attribute object with the default values
for all the attributes.

« Once artr has been initialized, its attribute values can be changed by using the
pthread_attr_set functions listed before.

« The pthread_attr_destroy() function can be used to destroy a pthread_attr_t object
specified by attr.

« Acall to this function deletes any hidden storage associated with the thread
attribute object.

34

Default Values for the Attribute Object

Karoly.Bosa@ jku.at

pthread Attribute Functions

SuSE Linux 2.6.13 Default
Values

Solaris 10 Default Values

pthread_attr_
setdetachstate()

pthread_attr_ setscope()

pthread_attr_
setinheritsched()

pthread_attr_
setschedpolicy ()

pthread_attr_setschedparam()

pthread_attr_setstacksize()

pthread_attr_ setstackaddr()

pthread_attr_setguardsize()

PTHEREAD CREATE_ JOINAELE

PTHREAD_ SCOPE_SYSTEM
(PTHREAD_SCOPE_DROCESS
is not supported)

DTHREAD EXPLICIT_SCHED

SCHED_OTHER

sched_priority = 0

not specified

not specified

not specified

PTHEEAD CEREATE_JOINAELE

PTHREAD_ SCOPE_PROCESS

PTHREAD E¥XPLICIT_SCHED

SCHED_OTHER

sched _priority = 0

NULL
allocated by system

NULL
1-2 MB

PACESTIZE

If a value is not supported its function returns an error number, for instance in
Linux environments PTHREAD_SCOPE_PROCESS is not supported, e.g.:

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope)

35

Creating Detached Threads Using the Pthread Attribute Object

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread attr setdetachstate(pthread_attr t *attr,
int *detachstate);

int pthread attr getdetachstate(const pthread_attr_t *attr,
int *detachstate);

 If an exiting thread is not joined with another thread, the exiting thread is said to
be detached.

« A pthread_join() cannot be used on a detached thread. If it is used, it returns an
error.

« The pthread_attr_setdetachstate() function can be used to set the detachstate
attribute of the attribute object.

» The detachstate parameter describes the thread as detached or joinable. The
detachstate can have one of these values:
- PTHREAD CREATE_DETACHED
- PTHREAD_ CREATE_JOINABLE

« The pthread_attr_getdetachstate() function returns the detachstate of the 36
attribute object.

pthread detach and an Example

I Karoly.Bosa@ jku.at

int pthread_detach(pthread_t tid);

« Threads that are already running can become detached by pthread_detach().

int main(int argc, char *argv([])
{

pthread_t Threadd, ThreadB;
pthread attr_ t DetachedAttr;

pthread_attr_init (&DetachedAttr);

pthread attr_ setdetachstate(&DetachedAttr, PTHREAD CREATE_DETACHED) ;
pthread_create (&ThreadA, &DetachedAttr, taskl ,NULL) ;

pthread create (&ThreadB, NULL, task2, K NULL) ;
i A
pthread_detach(pthread_t ThreadB) ;

//pthread_join(ThreadB,NULL); cannot call once detached
return (0} ;

37

Terminating Threads

I Karoly.Bosa@ jku.at

« Athread’s execution can be discontinued by several means:

» By returning from the execution of its assigned task with or without an exit
status or return value

» By explicitly terminating itself and supplying an exit status
« By being canceled by another thread in the same address space.

« Athread can (explicitly) self-terminate by calling pthread_exit().

#include <pthread.h>

int pthread exit(wvoid *value ptr);

« When the terminating thread calls pthread_exit(), it is passed the exit status in
value_ptr.

« The exit status is returned to pthread_join().

38

Terminating Peer Threads

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread cancel (pthread t thread);

« pthread_cancel() create a request to cancel/terminate peer threads. The request
can be
« granted immediately,
« granted at a later time or
e even ignored.

« The thread parameter is the thread to be canceled.

39

The Cancellability State and the Cancelability Type |.

I Karoly.Bosa@ jku.at

« The cancel type and cancel state of the target thread determines when
cancellation actually takes place:

» The cancelability state describes the cancel condition of a thread as
being cancelable or uncancelable.

« Athread’s cancelability type determines the thread’s ability to continue
after a cancel request.

« The cancelability state and type are dynamically set by the thread itself.

#include <pthread.h>

int pthread setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype):

« pthread_setcancelstate() and pthread_setcanceltype() are used to set the
cancelability state and type of the calling thread.

40

The Cancellability State and the Cancellability Type |l.

I Karoly.Bosa@ jku.at
Cancelability State Cancelability Type Description
PTHREATY CANCEL_ENAEBLE PTHEEAD CANCEL_DEFEREED Deferred cancellation. The

default cancellation state and
type of a thread. Thread
cancellation takes places when
it enters a cancellation point or
when the programmer defines
a cancellation point with a call
to pthread_testcancel ().

PTHEEAD CANCEL_ENAEBLE PTHREAD CANCEL_ASYNCHRONOUS AS_}"II{.‘JITDHG us cancellation.
Thread cancellation takes place
immediately.

PTHREAD_ CANCEL_DISABLE Ignored Disabled cancellation. Thread
cancellation does not take
place.

« pthread_testcancel() does nothing except process a pending cancellation in a
synchronously cancellable thread.

« Certain other functions are implicitly cancellation points as well. These are lis{ed
on the pthread_cancel() man page (e.g.: pthread_join()).

Cancellation Example

I Karoly.Bosa@ jku.at

vold *task3(void *X)

{
int 0l1dState,01dType;

// enable immediate cancelability

pthread_setcancelstate (PTHREAD CANCEL_ENABLE, £014State) ;
pthread setcanceltype (PTHEEAD CANCEL ASYNCHRONOUS, &01dType) ;

ofstream Cutfile("out3d.txt");
for(int Count = 1;Count < 100;Count++)

{
Outfile << "thread C is working: " << Count << endl;

}
Outfile.closel();

return (NULL);

* In Example, cancellation is set to take place immediately.

« So, the thread can open the file and be canceled while it is writing to the file

(dangerous and bad practice). 42

Cancellation Points Example I.

I Karoly.Bosa@ jku.at

#include <pthread.h>

void pthread testcancel (void);

« Acancellation point is a checkpoint where a thread checks if there are any
cancellation requests pending and, if so, concedes to termination.

void *taskl(wvoid *X)
{
int 0ldState,01dType;

//not needed default settings for cancelability
pthread setcancelstate (PTHREAD CANCEL ENABLE, &01dState);
pthread_ setcancel type (PTHREAD CANCEL_DEFERRED, &014Type) ;

pthread_testcancel () ;

ofstream Cutfile("outl.txt");
for(int Count = 1;Count < 1000:Count++)

{
Outfile <« "thread 1 is working: " << Count << endl;

h
Outfile.close();

pthread_testcancel () ;return (NULL): 43
}

Cancellation Points Example Il.

Karoly.Bosa@ jku.at

int main(int argc, char *argv([])
{
pthread t Threads[2];

vold *Status:

pthread_create (& (Threads[0]) ,NULL, taskl, NULL) ;
pthread_create(& (Threads[1]) ,NULL, task3, NULL) ;

oo,

pthread cancel (Threads[0]);
pthread cancel (Threads[1]);

for(int Count = 0;Count < 2;Count++)
{
pthread_join(Threads[Count], &Status) ;
if(5tatus == PTHREAD CANCELED) {
cout << "thread" << Count << "

1
else{

* The pthread_join() function does not
fail if it attempts to join with a thread
that has already been terminated.

» A canceled thread may return an
exit status PTHREAD_CANCELED.

has been canceled" << endl;

cout << "thread" << Count << " has survived" << endl;

}
h
return (0);

44

Cancellation-Safe Library Functions

I Karoly.Bosa@ jku.at

» The pthread library defines functions that can serve as cancellation points and
are considered asynchronous cancellation-safe functions.

« These functions block the calling thread, and while the calling thread is blocked,
it is safe to cancel the thread.

« These are the pthread library functions that act as cancellation points:
» pthread testcanel()

* pthread_cond_wait()
» pthread_timedwait

» pthread join()

45

System Calls as Cancellation Points

I Karoly.Bosa@ jku.at

« Some of the POSIX system calls that are required to be cancellation
points (e.g.: connect(), accept(), sleep(), system(), read(), write, etc.).

« These POSIX functions are safe to be used as deferred cancellation
points, but they may not be safe for asynchronous cancellation.

« Alibrary call that is not asynchronously safe that is canceled during
execution can cause library data to be left in an incompatible state.

46

Cleaning Up before Termination |.

I Karoly.Bosa@ jku.at

We mentioned earlier that a thread may need to perform some final processing
before it is terminated.

A cleanup stack is associated with every thread which contains pointers to
routines that are to be executed during the cancellation process.

#include <pthread.h>

void pthread cleanup_push(void (*routine) (veoid *), wvoid *arqg):

The function pushes a pointer to the routine to the cleanup stack.

The function routine is called with the arg parameter when the thread exits
under these circumstances:
* When calling pthread_exit(),

* When the thread concedes to a termination request and

* When the thread explicitly calls pthread_cleanup_pop() with a nonzero value

for execute.
47

Cleaning Up before Termination II.

I Karoly.Bosa@ jku.at

#include <pthread.h>

void pthread cleanup pop(int execute);

« The pthread_cleanup_pop() removes routine’s pointer from the top of the calling
thread’s cleanup stack.

« The execute parameter can have a value of 1 or O:

« If 1, the thread executes routine even if it is not being terminated. The thread
continues execution from the point after the call to this function.

» |f the value is 0, the pointer is removed from the top of the stack without
executing.

vold *taskd (vold *X)
{

« For each push, there needs to be a int *Tid;
pop if the clean up routine become T%ﬂﬂ= new iﬂt=k
J/ do some wor
obsolete (because the relevant code s

part finished ItS aCtIVIty) threaﬂ_c;eanup_push(cle-anup_taskd,T:'Lrilj;

.......

18

Setting Thread Scheduling and Priorities |.

I Karoly.Bosa@ jku.at

» The scheduling policy of a thread or group of threads can be set by an attribute
object using these functions:

#include <pthread.h>
#include <sched.h=>

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched);
void pthread attr setschedpolicy(pthread attr t *attr, int policy);
int pthread attr setschedparam(pthread_attr t *restrict attr,

const struct sched param *restrict param);

» pthread_attr_setinheritsched() is used to determine how the thread’s scheduling
attributes are set, by inheriting the scheduling attributes either from the creator
thread or from an attribute object.

» inheritsched can have one of these values:
« PTHREAD INHERIT_SCHED : Thread scheduling attributes are inherited
from the creator thread, and any scheduling attributes of the artr are
ignored.

« PTHREAD EXPLICIT _SCHED :Thread scheduling attributes are set to
the scheduling attributes of the attribute object artr. 49

Setting Thread Scheduling and Priorities |l.

I Karoly.Bosa@ jku.at

» The scheduling policy of a thread or group of threads can be set by an attribute
object using these functions:

#include <pthread.h>
#include <sched.h=>

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched);
void pthread attr setschedpolicy(pthread attr t *attr, int policy);
int pthread attr setschedparam(pthread_attr t *restrict attr,

const struct sched param *restrict param);

» pthread_attr_setschedpolicy() sets the scheduling policy of the thread attribute
object arrr.

* policy value can be one of the following defined in the <sched.h> header:
« SCHED_FIFOQO : First-In, First-Out scheduling,

« SCHED_RR Round robin scheduling and

« SCHED_OTHER : Another scheduling policy (implementation - defined).

By default, this is the scheduling policy of any newly created thread.
50

Setting Thread Scheduling and Priorities llI.

I Karoly.Bosa@ jku.at

» The scheduling policy of a thread or group of threads can be set by an attribute
object using these functions:

#include <pthread.h>
#include <sched.h=>

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched);
void pthread attr setschedpolicy(pthread attr t *attr, int policy);
int pthread attr setschedparam(pthread_attr t *restrict attr,

const struct sched param *restrict param);

» pthread_attr_setschedparam() to set the scheduling parameters of the attribute
object attr used by the scheduling policy.

* param isS a structure that contains the parameters. The sched_param structure
has at least this data member defined:

struct sched_param {
int sched_priority;
/...

b

51

Query the Priority Interval

I Karoly.Bosa@ jku.at

#include <sched.h>

int sched_get_priority max(int policy);
int sched get_priority min(int policy);

« Both functions are passed the scheduling policy policy for which the priority
values are requested, and

« Both return either the maximum or minimum priority values for the scheduling
policy.

52

Example : Setting the scheduling policy and priority of a thread.

I Karoly.Bosa @Jku.at
#include <pthread.h:= int main(int argc, char *argv[])
#include <sched.h> {
..
fl.o..

// Step 1: initialize attribute cbject

pthread t Thread?’; pthread_attr_init (&SchedAttr) ;
pthread_attr_t SchedAttr;

sched_param SchedParam;

- . AL i) o // Step 2: retrieve min and max priority values for scheduling policy
int MidPriority,MaxPriority, MinPriority;

MinPricority = sched_get_ priority_max(SCHED_RR) ;
MaxPricrity = sched _get_priority min(SCHED_ER) ;

// Step 3: calculate priority walue
MidPricority = (MaxPriority + MinPriority)/2;

// Step 4: assign priority value to sched param structure

Wlth these methOdS the SchedParam.sched _priority = MidPriority;
i i // Step 5: set attribute cbject with scheduling parameter
SC.he.dU“ng p_OIICy and pthread_attr_setschedparam(&SchedAttr, &5SchedParam) ;
priority are set in the thread
. . // Step 6: set scheduling attributes to be determined by attribute object
attribute ObjeCt before the pthread_attr_setinheritsched(&SchedAttr, PTHREAD_EXPLICIT_SCHED) ;
thread is created or running.

// Step 7: set scheduling policy
pthread_attr_setschedpolicy(&Schedlittr, SCHED_RR) ;

// Step 8: create thread with scheduling attribute cbject
pthread create(&Threadl, &SchedAttr, taskl ,NULL) ;

.

53

Dynamically Changing the Scheduling Policy and Priority

I Karoly.Bosa@ jku.at

#include <pthread.h>

int pthread setschedparam(pthread t thread, int policy,
const struct sched param *param);
int pthread_getschedparam(pthread_t thread, int *restrict policy,
struct sched param *restrict param);
int pthread_setschedprio(pthread t thread, int prio);:

» pthread_setschedparam() sets both the scheduling policy and priority of a thread
directly without the use of an attribute object.

* The pthread_getschedparam() returns the scheduling policy and scheduling
parameters.

« The pthread_setschedprio() is used to set the scheduling priority of an executing
thread.

54

Setting Contention Scope of a Thread

I Karoly.Bosa@ jku.at

The contention scope of the thread determines which set of threads a thread
competes with for processor usage (systemwide).

The contention scope of a thread is set by the thread attribute object.
#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);
int pthread attr getscope(const pthread_attr t *restrict attr,
int *restrict contentionscope):;

The pthread_attr_setscope() sets the contention scope property of the thread
attribute object specified by artr.

contentionscope can have these values:
« PTHREAD SCOPE_SYSTEM : System scheduling contention scope
« PTHREAD_ SCOPE_PROCESS : Process scheduling contention scope

pthread_attr_getscope() returns the contention scope attribute from the thread

attribute object specified by the artr .
55

Using sysconf() .

I Karoly.Bosa@ jku.at
Variable Name Value Description
_SC_THREADS _DOSIX _THREADS Supports threads
_SC_THREAD ATTR_ _POSIX THREAD ATTR_ Supports thread stack address
STACKADDR STACKADDR attribute
_SC_THREAD_ATTR_ _POSIX THREAD ATTR_ Supports thread stack size
STACKSIZE STACKSIZE attribute
_SC_THREAD_STACK_MIN PTHREAD_STACK_MIN Minimum size of thread stack

storage in bytes

_SC_THREAD THREADS_MAX PTHREAD THREADS_MAX Maximum number of threads
PET process

_SC_THREAD_KEYS_MAX PTHREAD_KEVS_MAX Maximum number of keys per
process
_SC_THREAD_PRIO_INHERIT _POSIX_THREAD PRIO_ Supports priority inheritance
INHERIT option
_SC_THREAD PRIO _POSIX THREAD PRIO_ Supports thread priority
option
_SC_THREAD_PRIORITY_ _DPOSIX_THREAD DPRIORITY_ Supports thread priority
SCHEDULING SCHEDULING scheduling option
_SC_THREAD_PROCESS_ _POSIX_THREAD_DPROCESS_ Supports process-shared
SHARED SHARED synchronization
_SC_THREAD_SAFE_ _POSIX THREAD SAFE Supports thread safe functions
FUNCTIONS FUNCTIONS
56

For instance: if PTHREAD_STACK_MIN == (sysconf(_SC_THREAD_STACK_MIN))){ //... }

Using sysconf() .

I Karoly.Bosa@ jku.at

Variable

Name Value

Description

_SC_THREAD DESTRUCTOR_
ITERATTIONS

_SC_CHILD_MAX

_SC_PRICRITY_ SCHEDULING

_SC_REATTIME_STIGNALS

_5C_XOPEN_EREALTIME
THEEADS

_SC_STREAM MAX

_5C_SEMAPHORES

_S5C_5EM NSEMS_MAX

_S5C_5EM VALUE_MAX

_5C_SHARED MEMORY_
OBJECTS

PTHREAD THREAD

DESTRUCTOR_ITERATIONS

CHILD_MAX

_POSIX_PRICRITY_

SCHEDULING

_POSIX_REATTIME_SIGNALS

_XOPEN_EEATLTIME_THREADS

STREAM MAX

_POSTX_SEMAPHORES

SEM_NSEMS_MAX

SEM_VALUE_MAX

_POSIX_SHARED_ MEMORY_

OBJECTS

Determines the number of
attempts made to destroy
thread-specific data on thread
exit

Maximum number of
processes allowed to a UID

Supports process scheduling

Supports real-time signals
Supports X/ Open POSIX real-

time threads feature group

Determines the number of
streams one process can have
open at a time

Supports semaphores

Determines the maximum
number of semaphores a
process may have

Determines the maximum
value a semaphore may have

Supports shared memory
objects

57

Thread Safety and Libraries

I Karoly.Bosa@ jku.at

A computer program or routine is described as reentrant if it can be safely
called again before its previous invocation has been completed.

A library is thread safe or reentrant when its functions may be called by more
than one thread at a time (and work correctly) without requiring any other action.

If the functions are not thread safe, then this means the functions:
« Contain static variables
» Access global data
* Are not reentrant

The POSIX standard defines several functions as reentrant. They are easily

identified by a _r attached to the function name of the non-reentrant counterpart
(e.g.: getgrgid_r(), getgrnam_r(), getpwuid_r(), sterror_r(), etc.).

58

