
Introduction into Multicore
Programming

1

Programming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

Topic
Karoly.Bosa@jku.at

Processes:

• What is a process?

• Why Processes and Not Threads?

• Process Control Block

• The address space/image of a process

• Process States

2

• Process Scheduling

• Context Switch

• Monitoring Processes with the ps Utility

• Creating Processes

• Calls Regarding Processes

• Introduction into Process Tracing

What Is a Process?
Karoly.Bosa@jku.at

• A process is a unit of work created by the operating system:

• it must have an address space assigned to it by the operating system.

• It must have a process id.

• It must have a state and an entry in the process table.

• A process has a set of executing instructions that resides in the address space

3

• A process has a set of executing instructions that resides in the address space

of that process.

• It is important to note that processes and programs are not necessarily

equivalent.

Why Processes and Not Threads?

Karoly.Bosa@jku.at

• Threads turn out to be easier to program because threads share the
same address space (communication and synchronization between
threads much easier).

• But:
• Processes have their own address space (provide a certain amount security

and isolation).

4

and isolation).

• For multiuser applications, each user’s process must be isolated.

• Operating system resources are assigned primarily to processes and then

shared by threads.

• The number of open files that threads may use is limited to how many open

files a single process can have.

Type of Processes
Karoly.Bosa@jku.at

• Processes that execute system code are called system processes ,or kernel

processes.

• User processes execute their own code, and sometimes they make system

function calls:

• When a user process executes its own code, it is in user mode.

5

• When a user process executes its own code, it is in user mode.

• In kernel mode, a user process makes a system function call (for

example, read() , write() , or open()), it is executing operating system

instructions.

If the processor is given to the kernel to complete the system call, it

cannot be preempted by any user processes.

• Remark: preemption is the act of temporarily interrupting a task being carried

out by the CPU, and with the intention of resuming the task at a later time.

Process Control Block I.
Karoly.Bosa@jku.at

• Processes have characteristics that identify them and determine their
behavior during execution.

• The kernel maintains data structures and provides system functions that
allow the user to have access to this information.

• Some information is stored in the process control block (PCB) .

6

• PCB is needed for the operating system to manage each process.

• When the operating system switches between a process utilizing the
CPU to another process, …

• … it saves the current state of the executing process and its
context to the PCB,

• in order to restart the process the next time it is assigned to the
CPU.

Process Control Block II.
Karoly.Bosa@jku.at

• PCB information includes:

process control –Current state and priority of the process

–Pointers to allocated resources

–Pointers to location of the process’s memory

–Pointer to the process’s parent and child

processes

7

processes

state of the

processor

–Processor utilized by process

–Control and status registers

–Stack pointers

process
identification

–Process, parent, and child identifiers

The address space of a process I.
Karoly.Bosa@jku.at

8

The address space of a process II.
Karoly.Bosa@jku.at

• The address space of a process is

virtual.

• The segments of the process’s virtual

address space are contiguous blocks

of memory.

• Physical address space is broken up

9

• Physical address space is broken up

into chunks called pages . Each page

has a unique page frame

number(PFN).

• Each segment is broken up virtual

pages.

• The virtual page frame number

(VPFN) is used as an index into the

process’s page tables which contain

PFNs.

Process Table
Karoly.Bosa@jku.at

• The operating system has a table for all the resources of the computer that it

including: processes, devices, memory, and files.

• The process table has an entry for each process image in memory.

10

• Each entry contains:

• the process and parent process id;

• the real and effective user id and

group id;

• a list of pending signals;

• the location of the PCB, text, data, and

stack segments and;

• the current state of the process.

Process States
Karoly.Bosa@jku.at

• During a process’s execution, it changes its state.

• The state of the process is the current condition or status of the process.

• In a POSIX - compliant environment, a process can be in the following states:

• Running

• Runnable (ready)

11

• Zombied

• Waiting (blocked)

• Stopped

• State transition is the circumstance that causes the process to change its state.

State Transitions I.
Karoly.Bosa@jku.at

READY->RUNNING

(dispatch)

The process is assigned to the processor.

RUNNING->

SLEEPING (block)

The process gives up the processor before the time

slice has run out. The process may need to wait for an

event or has made a system call, for example, a

request for I/O. The process is placed in a queue with

other sleeping processes.

12

State Transitions II.
Karoly.Bosa@jku.at

RUNNING->

READY(preempt)

The process has been preempted before the time slice

ran out. This can occur if a process with a higher

priority is runnable. The process is placed back in the

ready queue.

RUNNING->

READY(timer

runout)

The time slice the process assigned to the processor

has run out. The process is placed back in the ready

queue.

13

State Transitions III.
Karoly.Bosa@jku.at

SLEEPING->READY

(unblock)

The event the process was waiting for has occurred,

or the system call has completed. For example, the

I/O request is filled. The process is placed back in the

ready queue.

RUNNING->

STOPPED

The process gives up the processor because it has

received a signal to stop.

14

State Transitions IV.
Karoly.Bosa@jku.at

STOPPED->READY The process has received the signal to continue and is

placed back in the ready queue.

RUNNING->

ZOMBIED

The process has been terminated and awaits the

parent to retrieve its exit status from the process table.

15

State Transitions V.
Karoly.Bosa@jku.at

ZOMBIED->EXIT The parent process has retrieved the exit status, and

the process exits the system.

RUNNING->EXIT The process has terminated, the parent has retrieved

the exit status, and the process exits the system.

16

Process Scheduling: Multilevel priority Queue
Karoly.Bosa@jku.at

• Each process is given a

priority class and placed

in a priority queue with

other runnable processes

with the same priority

class.

• The scheduler assigns

STATIC

PRIORITIES

17

• The scheduler assigns

the process at the head

of the nonempty highest

priority queue to the

processor.

• Priorities can be dynamic or static in Linux/Unix:

•Once a static priority of a process is set, it cannot be changed.

•Dynamic priorities (nice value) can be changed.

• System processes have a higher priority than user processes.

Scheduling Policy: First In, First Out (FIFO)
Karoly.Bosa@jku.at

18

• With a FIFO scheduling policy, processes are assigned the processor according

to the arrival time in the queue.

• A process can make a system call and give up the processor to another process

with the same priority level. The process is then placed at the end of its priority

queue.

Scheduling Policy: Round Robin (RR)
Karoly.Bosa@jku.at

19

• RR scheduling is the same as FIFO scheduling with one exception: When the

time slice expires, the process is placed at the back of the queue and the next

process in the queue is assigned the processor.

Scheduling Policy: OTHER
Karoly.Bosa@jku.at

• It is defined as architecture dependent scheduling in POSIX. In Linux/Unix

systems it works as follows:

• The Linux kernel implements a dynamic priority ranges.

• This is the nice value, a number from –20 to 19 with a default of zero.

• This kind of priority applies only to conventional processes (with 0 static

20

• This kind of priority applies only to conventional processes (with 0 static

priority).

• Processes with a lower nice value (higher priority) run before processes with

a higher nice value (lower priority).

• If a process is ready to run, but its execution is denied, its nice value is

decremented in every quantum.

Context Switch
Karoly.Bosa@jku.at

• A context switch occurs when the use of the processor is switched from one

process to another process.

• A context switch occurs when a:

• Process is preempted

• Process voluntarily gives up the processor

• Process makes an I/O request or needs to wait for an event

• Process switches from user mode to kernel mode

21

• When a context switch occurs,

• the system saves the context of the current running process and

• Restores the context of the next process selected to use the processor.

Monitoring Processes with the ps Utility
Karoly.Bosa@jku.at

• The ps utility generates a report that summarizes execution statistics for the

current processes.

22

Usage of ps Utility
Karoly.Bosa@jku.at

To see every process on the system:

–ps –e (using standard syntax)

–ps ax (using BSD syntax)

Some options:

• -u username : List the processes belong

to the given user

23

–ps ax (using BSD syntax)

To print a process tree:

–ps –ejH

–ps axjf

Some options:

• -t term : List the processes associated

with the terminal specified by term.

• T : (Linux) All processes in this terminal

to the given user

• - e : All current processes

• r : (Linux) Only running processes

• - f : Full listings

• - l : Long format

• -o format: specify output format

Example of the Usage ps Utility
Karoly.Bosa@jku.at

24

Example of the Usage ps Utility
Karoly.Bosa@jku.at

25

Example of the Usage ps Utility
Karoly.Bosa@jku.at

26

Example of the Usage ps Utility
Karoly.Bosa@jku.at

27

Example of the Usage ps Utility
Karoly.Bosa@jku.at

28

The STAT header can reveal additional information about the status of the process:

Creating Processes
Karoly.Bosa@jku.at

• fork() - function creates a new process. The new process (child process) shall

be an exact copy of the calling process (parent process) except as some minor

things (e.g.:process id).

• exec() - The exec family of functions replaces the current process image with a

new process image.

• system() – executes a command specified in the argument string and

returns after the command has been completed.

29

returns after the command has been completed.

• posix_spawn() - create child processes with more fine-grained control during

creation…

Remark: These functions also control the attributes that the child process inherits

from the parent process, e.g.:

File descriptors, scheduling policy, process group id,

user and group id, signal mask.

Using the fork() Function Call
Karoly.Bosa@jku.at

• It creates a new process that is a duplication of the calling process, the parent.

• The fork() returns two values if it succeeds:

• It returns 0 to the child process and

30

• it returns the PID of the child to the parent process.

• Both processes continue to execute from the instruction immediately following

the fork() call.

• The fork() fails if the system does not have the resources to create another

process.

Using the exec() Family of System Calls
Karoly.Bosa@jku.at

• The exec family of functions replaces the calling process image with a new

process image.

• The new process image is a regular executable file:

31

• The new process image is a regular executable file:

• The executable can be specified as a path or a filename.

• These functions can pass command-line arguments to the new process.

• Environment variables can also be specified.

• Usually there is no return value if the function is not successful, because the

process image that contained the call to the exec is overwritten.

• All of the exec() functions can fail under these conditions:

• Permissions are denied.

• Files do not exist.

• File is not executable

• Problems with symbolic links

Example for fork() and execl() Calls
Karoly.Bosa@jku.at

• The exec functions are often used together with the fork()

#include <unistd.h>

//...

RetVal = fork();

If (RetVal == 0) {

execl(“/bin/ls”, “ls”, “-l”, NULL);

32

execl(“/bin/ls”, “ls”, “-l”, NULL);

}

//…

• Remark: If RetVal is 0, then it is the child process.

Execl Functions
Karoly.Bosa@jku.at

• The execl() , execle() , and execlp() functions pass the command-line arguments

as a list.

• The number of command - line arguments should be known at compilation time

• int execl(const char *path, const char *arg0,.../*,(char *)0 */);

• int execle(const char *path, const char *arg0,.../*,(char *)0 *, char *const envp[]*/);

33

envp[] parameter contains the new environment for the new process. It is a

pointer to a null–terminated array of null-terminated strings. Each string has the

form: name=value , e.g.:
char *const envp[] = {“PATH=/opt/kde5:/sbin”, “HOME=/home”,NULL};

• int execlp(const char *file, const char *arg0,.../*,(char *)0 */);

file is the name of the program executable. It uses the PATH environment

variable to locate the executables.

Execv Functions
Karoly.Bosa@jku.at

• The execv() , execve() , and execvp() functions pass the command-line arguments

in a vector of pointers to null-terminated strings.

• The number of command-line arguments should be known at compilation time.

• int execv(const char *path,char *const arg[]);

• int execve(const char *path,char *const arg[],char *const envp[]);

34

This function is identical to execv() except that it has the additional parameter

envp[] described earlier.

• int execvp(const char *file,char *const arg[]);

file is the name of the program executable.

Examples for Exec Functions
Karoly.Bosa@jku.at

char *const envp[] = {“HOME=/home”,NULL};

execl(“/bin/ls”, ”ls”, ”-l”, NULL);

execle(“/bin/ls”, ”ls”, ”-l”, “$HOME”, NULL, envp);

execlp(“ls”, ”ls”, ”-l”, NULL);

35

char *const arg[] = {“du”, “-h”, ”/etc”, “/root”, NULL};

char *const envp[] = {“HOME=/home”, NULL};

execv(“/usr/bin/du”, arg);

execve(“/usr/bin/du”, arg, envp);

execvp(“du”, arg);

Determining the Restrictions of exec() Functions
Karoly.Bosa@jku.at

• There is a limit on the size that argv[] and envp[] can be when passed to the

exec() functions.

• The sysconf() can be used to determine these limitations.

• To determine the maximum size of the command-line arguments plus the size of

environment variables for the functions:

#include < unistd.h >

36

#include < unistd.h >

//…

sysconf (_SC_ARG_MAX);

• To determine the maximum number of simultaneous processes allowed per user

id:
sysconf (_SC_CHILD_MAX);

Using system() Functions to Spawn Processes
Karoly.Bosa@jku.at

• The system() function executes a fork() , and the child process calls an exec()

with a shell that executes the given command or program.

• The string parameter can be a system command or the name of an executable

file.

37

• Errors can happen at several levels:

• The function returns the value127 if the exec() fails,

• - 1 if some other error occurs and

• the return code of the command is returned if the function succeeds.

The function posix_spawn()
Karoly.Bosa@jku.at

38

Remark: POSIX functions used to spawn and manage processes are contained by the

header spawn.h.

The file_actions Parameter
Karoly.Bosa@jku.at

• The file_actions parameter is a pointer to a posix_spawn_file_actions_t

structure:

struct posix_spawn_file_actions_t{

{

int __allocated;

int __used;

struct __spawn_action *actions;

int __pad[16];

39

int __pad[16];

};

• This data structure that contains information about the actions to be performed

in the new process with respect to file descriptors.

File Action Attribute Functions I.
Karoly.Bosa@jku.at

int

posix_spawn_file_actions_addclose

(posix_spawn_file_actions_t

*file_actions, int fildes);

Adds a close() action to a spawn file

action object specified by file_actions.
This causes the file descriptor fildes to be

closed when the new process is

spawned using this file action object.

int

posix_spawn_file_actions_addopen

(posix_spawn_file_actions_t

Adds an open() action to a spawn file

action object specified by file_actions.

This causes the file named path with
the returned file descriptor fildes to be

40

(posix_spawn_file_actions_t

*file_actions, int fildes,

const char *restrict path,

int oflag, mode_t mode);

the returned file descriptor fildes to be

opened when the new process is

spawned using this file action object.

int

posix_spawn_file_actions_adddup2

(posix_spawn_file_actions_t

*file_actions, int fildes,

int newfildes);

Adds a dup2() action to a spawn file

action object specified by file_actions.
This causes the file descriptor fildes to

be duplicated with the file descriptor
newfildes when the new process is

spawned using this file action object.

File Action Attribute Functions II.
Karoly.Bosa@jku.at

int

posix_spawn_file_actions_destroy

(posix_spawn_file_actions_t

*file_actions);

Destroys the specified file_actions

object. This causes the object to be

uninitialized. The object can then

be reinitialized using

posix_spawn_file_actions_init().

41

int

posix_spawn_file_actions_init

(posix_spawn_file_actions_t

*file_actions);

Initializes the specified file_actions

object. Once initialized, it contains

no file actions to be performed.

The attrp Parameter
Karoly.Bosa@jku.at

• The attrp parameter points to a posix_spawnattr_t structure:

struct posix_spawnattr_t

{

short int __flags;

pid_t __pgrp;

sigset_t __sd;

sigset_t __ss;

struct sched_param __sp;

42

struct sched_param __sp;

int __policy;

int __pad[16];

}

• This structure contains information about the scheduling policy, process group,

signals, and flags for the new process.

The attributes of the posix_spawnattr_t Structure
Karoly.Bosa@jku.at

• __flags : Used to indicate which process attributes are to be modified in the

spawned process. They are bitwise - inclusive OR of 0 or more of the following:
• POSIX_SPAWN_RESETIDS

• POSIX_SPAWN_SETPGROUP

• POSIX_SPAWN_SETSIGDEF

• POSIX_SPAWN_SETSIGMASK

• POSIX_SPAWN_SETSCHEDPARAM

• POSIX_SPAWN_SETSCHEDULER

43

• __pgrp : The id of the process group to be joined by the new process.

• __sd : Represents the set of signals to be forced to use default signal handling

by the new process.

• __ss : Represents the signal mask to be used by the new process.

• __sp : Represents the scheduling parameter to be assigned to the new process.

• __policy : Represents the scheduling policy to be used by the new process.

Spawn Process Attributes Functions I.
Karoly.Bosa@jku.at

int posix_spawnattr_getflags

(const posix_spawnattr_t *restrict

attr, short *restrict flags);

Returns the value of the __flags

attribute stored in the specified attr

object.

int posix_spawnattr_setflags

(posix_spawnattr_t *attr,

Sets the value of the __flags

attribute stored in the specified attr

44

(posix_spawnattr_t *attr,

short flags);

attribute stored in the specified attr

object to flags.

int posix_spawnattr_getpgroup

(const posix_spawnattr_t *restrict

attr, pid_t *restrict pgroup);

Returns the value of the __pgroup

attribute stored in the specified attr

object and stores it in pgroup.

Spawn Process Attributes Functions II.
Karoly.Bosa@jku.at

int posix_spawnattr_setpgroup

(posix_spawnattr_t *attr,

pid_t pgroup);

Sets the value of the __pgroup

attribute stored in the specified attr

object to pgroup if POSIX_

SPAWN_SETPGROUP is set in

the __flags attribute.

int posix_spawnattr_getschedparam

(const posix_spawnattr_t

Returns the value of the __sp

attribute stored in the specified attr

45

(const posix_spawnattr_t

*restrict attr, struct sched_param

*restrict schedparam);

attribute stored in the specified attr

object and stores it in schedparam.

int posix_spawnattr_setschedparam

(posix_spawnattr_t *attr,

const struct sched_param *restrict

schedparam);

Sets the value of the __sp attribute

stored in the specified attr object to

schedparam if POSIX_SPAWN_

SETSCHEDPARAM is set in the

__flags attribute.

Spawn Process Attributes Functions III.
Karoly.Bosa@jku.at

int posix_spawnattr_getschedpolicy

(const posix_spawnattr_t *restrict

attr, int *restrict schedpolicy);

Returns the value of the __policy

attribute stored in the specified attr

object and stores it in schedpolicy.

int posix_spawnattr_setschedpolicy

(posix_spawnattr_t *attr,

Sets the value of the __policy

attribute stored in the specified attr

46

(posix_spawnattr_t *attr,

int schedpolicy);

attribute stored in the specified attr

object to schedpolicy if

POSIX_SPAWN_

SETSCHEDULER is set in the

__flags attribute.

int posix_spawnattr_getsigdefault

(const posix_spawnattr_t *restrict

attr, sigset_t *restrict

sigdefault);

Returns the value of the __sd

attribute stored in the specified attr

object and stores it in sigdefault.

Spawn Process Attributes Functions IV.
Karoly.Bosa@jku.at

int posix_spawnattr_setsigdefault

(posix_spawnattr_t *attr,

const sigset_t *restrict

sigdefault);

Sets the value of the __sd attribute

stored in the specified attr object to

sigdefault if POSIX_SPAWN_

SETSIGDEF is set in the __flags

attribute.

int posix_spawnattr_getsigmask

(const posix_spawnattr_t *restrict

attr, sigset_t *restrict sigmask);

Returns the value of the __ss

attribute stored in the specified attr

object and stores it in sigmask.

47

attr, sigset_t *restrict sigmask);
object and stores it in sigmask.

int posix_spawnattr_setsigmask

(posix_spawnattr_t *restrict attr,

const sigset_t *restrict sigmask);

Sets the value of the __ss attribute

stored in the specified attr object to

sigmask if POSIX_SPAWN_

SETSIGMASK is set in the __flags

attribute.

Spawn Process Attributes Functions V.
Karoly.Bosa@jku.at

int posix_spawnattr_destroy

(posix_spawnattr_t *attr);

Destroys the specified attr object.

The object can then become

reinitialized using

posix_spawnattr_init().

int posix_spawnattr_init

(posix_spawnattr_t *attr);

Initializes the specified attr object

with default values for all of the

attributes contained in the

structure.

48

structure.

A Simple posix_spawn() Example
Karoly.Bosa@jku.at

49

Who Is the Parent? Who Is the Child?
Karoly.Bosa@jku.at

• There are two functions that return the process id (PID) of the process and

parent process:

50

• getpid() returns the process id of the calling process.

• getppid() returns the parent id of the calling process.

• These functions are always successful; therefore no errors are defined.

