Introduction into Multicore
Programming

Karoly Bosa
(Karoly.Bosa@ijku.at)

Research Institute for Symbolic Computation
(RISC)

Topic

Karoly.Bosa@ jku.at

Processes:

What is a process?

Why Processes and Not Threads?
Process Control Block

The address space/image of a process
Process States

Process Scheduling

Context Switch

Monitoring Processes with the ps Ultility
Creating Processes

Calls Regarding Processes

Introduction into Process Tracing

What Is a Process?

Karoly.Bosa@ jku.at

« A process is a unit of work created by the operating system:

it must have an address space assigned to it by the operating system.

It must have a process id.
It must have a state and an entry in the process table.

A process has a set of executing instructions that resides in the address space
of that process.

It is important to note that processes and programs are not necessarily
equivalent.

Why Processes and Not Threads?
I Karoly.Bosa@ jku.at

« Threads turn out to be easier to program because threads share the
same address space (communication and synchronization between
threads much easier).

« But:
» Processes have their own address space (provide a certain amount security
and isolation).

» For multiuser applications, each user’s process must be isolated.

» Operating system resources are assigned primarily to processes and then
shared by threads.

« The number of open files that threads may use is limited to how many open
files a single process can have.

Type of Processes

I Karoly.Bosa@ jku.at

» Processes that execute system code are called system processes ,or kernel
processes.

« User processes execute their own code, and sometimes they make system
function calls:

» When a user process executes its own code, it is in user mode.

* In kernel mode, a user process makes a system function call (for
example, read() , write() , or open()), it is executing operating system
instructions.

If the processor is given to the kernel to complete the system call, it
cannot be preempted by any user processes.

« Remark: preemption is the act of temporarily interrupting a task being carried

out by the CPU, and with the intention of resuming the task at a later time.
5

Process Control Block |.

I Karoly.Bosa@ jku.at

* Processes have characteristics that identify them and determine their
behavior during execution.

« The kernel maintains data structures and provides system functions that
allow the user to have access to this information.

« Some information is stored in the process control block (PCB) .
« PCB is needed for the operating system to manage each process.

« When the operating system switches between a process utilizing the
CPU to another process, ...

« ... It saves the current state of the executing process and its
context to the PCB,

 In order to restart the process the next time it is assigned to the
CPU. 6

Process Control Block II.

I Karoly.Bosa@ jku.at

 PCB information includes:

process control —Current state and priority of the process
—Pointers to allocated resources

—Pointers to location of the process’s memory
—Pointer to the process’s parent and child

processes
state of the —Processor utilized by process
processor —Control and status registers

—Stack pointers

process —Process, parent, and child identifiers
identification

The address space of a process |.

I Karoly.Bosa@ jku.at

PROCESS IDENTIFICATION

PROCESS STATE INFO. -PCB

PROCESS CONTROL INFO.

STACK SEGMENT
KERNEL STACK

PROCESS B USER STACK

IMAGE DATA SEGMENT

« initialized global variables
« eternal variables
« static variables

TEXT SEGMENT

* program code

The address space of a process |l.

L . Karoly.Bosa@ jku.at
PROCESS B'S
VIRTUAL ADDRESS
. SPACE
« The address space of a process is =T
Vi rtU a l E:({;}EETSR% LBEg :EE: ; - STACK SEGMENT
PFN 35 I VPFN 5 T
« The segments of the process’s virtual PN VP4 | | DATASEGUENT
\ PFN 13 VPFN 3
address space are contiguous blocks | wine]
of memory. | PN VPFN 1 L TEXT SEGMENT
VPFN 0

PHYSICAL MEMORY

« Physical address space is broken up
IntO Chunks Ca”ed pages . EaCh page oy PFN3 | PFN4 PFN 5 PFN 6 PENT PENS | PFEN9
has a unique page frame f
number(PFN). veEN 8 ﬁj
VPFN 7 » PINS L
] . VPFN & PFN 16
« Each segment is broken up virtual VPEN 5 PPN 3
VPFN 4 PFN 26
pages' VPEN 3 PFN 1
VPN 2 PROCESS A'S
PAGE TABLES
» The virtual page frame number e
(VPFN) is used as an index into the PROGESS A'S
VIRTUAL ADDRESS

process’s page tables which contain SPACE
PFNSs. g

Process Table

Karoly.Bosa@ jku.at

The operating system has a table for all the resources of the computer that it
including: processes, devices, memory, and files.

The process table has an entry for each process image in memory.

MEMORY TABLES | pID19s
image
MEMORY j FILE TABLES
FILES ~—r
DEVICES — /0 TABLES > :::g ;ES’S
PROCESSES
Each entry contains: PID PPID STAT
the process and parent process id; I
the real and effective user id and L
group |d, 12 | 15 R
a list of pending signals;]9]S
the location of the PCB, text, data, and free entry)| PID42s
stack segments and; 42 | 30 | S image
PROCESS TABLES

the current state of the process.

10

Process States

I Karoly.Bosa@ jku.at

« During a process’s execution, it changes its state.

« The state of the process is the current condition or status of the process.

« Ina POSIX - compliant environment, a process can be in the following states:

Running
Runnable (ready)
Zombied
Waiting (blocked)

Stopped

« State transition is the circumstance that causes the process to change its state.

11

State Transitions |I.

L Karoly.Bosa@ jku.at

READY->RUNNING The process is assigned to the processor.

(dispatch)

RUNNING-> The process gives up the processor before the time

SLEEPING (block) slice has run out. The process may need to wait for an
event or has made a system call, for example, a
request for 1/0O. The process is placed in a queue with
other sleeping processes.

. STOPPED |
signaled — signaled
preempt
enters - ﬂ\(’/\/) exit
system .*/ READY dispatch / \ system
'\ (runnable) | F' RUNNING ' -
/‘W /
event occurs wait on event :
or /0 complete /—\ or 110 terminated - _\
7 exit
| SLEEPING | [zompiEp BT, 12

I\\u____,_/ | N4

State Transitions Il.

L Karoly.Bosa@ jku.at
RUNNING-> The process has been preempted before the time slice
READY (preempt) ran out. This can occur if a process with a higher

priority is runnable. The process is placed back in the
ready queue.

RUNNING-> The time slice the process assigned to the processor
READY (timer has run out. The process is placed back in the ready
runout) queue.
7N\
| STOPPED |
_ N4 _
signaled T signaled
preempt
enters B ﬂ\(’/\/ i exit
system ,/ READY) dispatch / \ system
_h'n (runnable) | > RUNNING | >
/‘wm/')\ /

event occurs wait on event

or /0 complete — or /0 J—
/ \ 7 N\ exit

. SLEEPING | [zomeiep FXEET, 13

I\\u____,_/ | NG /

terminated

—

State Transitions lIl.

I Karoly.Bosa@ jku.at
SLEEPING->READY The event the process was waiting for has occurred,
(unblock) or the system call has completed. For example, the

I/0O request is filled. The process is placed back in the
ready queue.

RUNNING-> The process gives up the processor because it has
STOPPED received a signal to stop.
7N
| STOPPED |
_ N4 _
signaled T signaled
preempt
enters B ﬂ\(’/\/ i exit
system ,/ READY) dispatch / \ system
'g (runnable) | '| RUNNING | >
/‘wm/')\ /

event occurs wait on event

or /0 complete — or /0 J—
/ \ 7 N\ exit

. SLEEPING | [zomeiep FXEET, 14

Iﬁ\%____,_/ | ./

terminated

e

State Transitions V.

I Karoly.Bosa@ jku.at
STOPPED->READY The process has received the signal to continue and is
placed back in the ready queue.
RUNNING-> The process has been terminated and awaits the
ZOMBIED parent to retrieve its exit status from the process table.
/N
| STOPPED |
signaled \-‘/ signaled
preempt
enters /" "m \ exit
t , \ ispatc / \ L
system :‘ rﬁﬁﬁﬂe J: dispatch -'| RUNING system R
/‘W /

event occurs wait on event

or /0 complete — or /0 J—
/ \ 7 N\ exit

. SLEEPING | [zomeiep FXEET, 15

Iﬁ\%____,_/ | ./

terminated

e

State Transitions V.

I Karoly.Bosa@ jku.at

ZOMBIED->EXIT The parent process has retrieved the exit status, and
the process exits the system.

RUNNING->EXIT The process has terminated, the parent has retrieved
the exit status, and the process exits the system.

- STOPPED |
signaled — signaled
preempt
enters - "m}_- - exit
system .*/ READY *. dispatch / \ system
> &
'g (runnable) / | RUNNING |
/‘W /
event occurs wait on event :
or 1/0 complete /—\ or 1/0 terminated \
/ exit

. SLEEPING | | zomBIED ﬁyﬂﬂ, 16

Iﬁ\%____,_/ | N

Process Scheduling: Multilevel priority Queue

I Karoly.Bosa@ jku.at

STATIC
PRIORITIES

« Each process is given a
priority class and placed s L PD12| PID17
in a priority queue with
other runnable processes

. .. CORED CORE 1 5
with the same priority
PID 71 PID 35
class. _ .
running running 4 +—— PID9D | PID43 | PIDT0 | PIDS0O
» The scheduler assigns V
the process at the head :
of the nonempty highest DISPATCHER \ oom | oo
priority queue to the % 2 [mFPibiT)PD3s) PIDGS
processor. R —
:

 Priorities can be dynamic or static in Linux/Unix:
*Once a static priority of a process is set, it cannot be changed.
*Dynamic priorities (nice value) can be changed.
17

» System processes have a higher priority than user processes.

Scheduling Policy: First In, First Out (FIFO)

[Karoly.Bosa@jku.at
READY QUEUE
15t to arive last to arive
exit CORE 0 CORE 1 assigned | T T T
She CPU
<& lepn PID35 || «—1 PIDT1 : PID 35 : PID 63 |4 PID 50
TLNinG Tunning l_ _1._ B I I i

timer runout

- 1

PID90 | PID 43 | PID10 PIDSDl—
| 1/0 complete

— 4
SLEEPING PROCESSES IN A QUEUE

I/0 request

« With a FIFO scheduling policy, processes are assigned the processor according
to the arrival time in the queue.

« Aprocess can make a system call and give up the processor to another process
with the same priority level. The process is then placed at the end of its priority
queue.

18

Scheduling Policy: Round Robin (RR)

[Karoly.Bosa@jku.at
READY QUEUE
15t to armive last to arrive
axit CORE O CORE 1 assigned |_ T T T T
sig CPU
il PID 71 PID35 || «—— PIDT1 : PID 35 : PID 63 |« PID 50
Tunning TLNing l_ - =l J—‘_ _i i
timer runout JI
-1
PIpop | PID43 | PID10 | PID B0 |
/0 request | 1/0 complete
]

SLEEPING PROCESSES IN A QUELE

* RR scheduling is the same as FIFO scheduling with one exception: When the
time slice expires, the process is placed at the back of the queue and the next
process in the queue is assigned the processor.

19

Scheduling Policy: OTHER

I Karoly.Bosa@ jku.at

« It is defined as architecture dependent scheduling in POSIX. In Linux/Unix
systems it works as follows:

« The Linux kernel implements a dynamic priority ranges.
* This is the nice value, a number from =20 to 19 with a default of zero.

 This kind of priority applies only to conventional processes (with O static
priority).

» Processes with a lower nice value (higher priority) run before processes with
a higher nice value (lower priority).

« If a process is ready to run, but its execution is denied, its nice value is
decremented in every quantum.

20

Context Switch

I Karoly.Bosa@ jku.at

« A context switch occurs when the use of the processor is switched from one
process to another process.

« A context switch occurs when a:
* Process is preempted
» Process voluntarily gives up the processor
» Process makes an I/O request or needs to wait for an event
» Process switches from user mode to kernel mode

« When a context switch occurs,

» the system saves the context of the current running process and
» Restores the context of the next process selected to use the processor.

21

Monitoring Processes with the ps Ultility

Karoly.Bosa@ jku.at

The ps utility generates a report that summarizes execution statistics for the

current processes.

Headers Description Headers Description
USER, UID Username of process owner TT, TTY Process’s controlling terminal
PID Process [D S, STAT Current state of the process
PPID Parent process ID
PGID ID of process group leader TIME Total CPU time used by the
SID ID of session leader process (HH:MM:SS)
$CPU Percentage of CPU time used by STIME, Time or date the process
the process in the last minute START started
RSS Amount of real RAM currently NI Nice value of the process
used by the process in k
LMEM Percentage of real RAM used by PRI Priority of the process
the process in the last minute
SZ Size of virtual memory of the
process's data and stack in k or
pages
WCHAN Address of an event for which a ADDR Memory address of a process
process is sleeping
COMMAND Command name and arguments LWP [D of the lwp (thread)
CMD NLWD The number of lwps

22

Usage of ps Utility

I Karoly.Bosa@ jku.at

(Linux)

ps -[Unix9%8 options]
[BSD-style options]
-- [GNU-style long options

(Soclaris)
ps [-aRdeflciLPy] [-o format] [-t termlist][-u userlist]
[-G grouplist] [-p proclist] [-g pgrplist] [-s sidlist]

To see every process on the system: Some options:
—ps —e (using standard syntax) « -u username : List the processes belong
—ps ax (using BSD syntax) to the given user

To prin’[a process tree: - e : All current processes

—ps —ejH

—ps axjf r : (Linux) Only running processes

Some options: - f : Full listings

« -t term : List the processes associated
with the terminal specified by term.

- | : Long format

» T : (Linux) All processes in this terminal -0 format. specify output format 23

Example of the Usage ps Utility

I Karoly.Bosa@ jku.at

$ ps -f
UID PID PPID C STIME TTY TIME CMD

cameron 2214 2212 0 21:03:35 pts/12 0:00 -ksh
cameron 2396 2214 2 11:55:49 pts/12 0:01 nedit
5 ps -1f
F & UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
8 S cameron 2214 2212 0 51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00 -ksh
B8 S cameron 2396 2214 1 53 24 704747b8 843 70152aba 11:55:49 pts/12 0:01 nedit
s ps -1fP
F 5 UID PID PPID PSR C PRI NI ADDE SZ WCHAN STIME TTY TIME CMD
0 5 kbosa 4318 4317 1 0 80 o - 1157 - 1%:37 pts/0 00:00:00 -tecsh
0 R kbosa 4543 4318 0o 0 80 0o - 599 - 1%:55 pts/0 00:00:00 ps —-1fP
S ps Tux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
tdhughes 19259 0.0 0.1 2448 1356 pts/4 s 20:29 0:00 -bash
tdhughes 19334 0.0 0.0 1732 B&0 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19336 0.0 0.0 1928 780 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19337 18.0 2.4 26872 24856 pts/4 24 20:33 0:47 /home/tdhughes/pv
tdhughes 19338 18.0 2.3 26872 24696 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19341 17.9 2.3 26872 24556 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19400 0.0 0.0 2544 £S52 pts/4 R 20:38 0:00 ps Tux
tdhughes 19401 0.0 0.1 2448 1356 pts/4 R 20:38 0:00 -bash

24

Example of the Usage ps Utility

I Karoly.Bosa@Jku.at

$ ps -f
UID BFID FPID C STIME TTY TIME CMD

cameron 2214 2212 0 21:03:35 pts/12 0:00 -ksh
cameron 2396 2214 2 11:55:49 pts/12 0:01 nedit
5 ps -1f

& UID PID PPID C €RI NI ADDR SZ WC STIME TTY TIME CMD
g8 & cameron 2214 2212 0 51 20 70e80f00 2320 70=B80fec 21:032:35 ptE;"lE 0:00 -ksh
g & cameron 23%& 2214 1 53 24 704747b8 B43 70152Zaba 11:55:4%9 ptE;"lE 0:01 nedit
s ps -1fP
F 5 UID FID» PPID PSR C PRI NI ADDR 572 WCHAN STIME TTY TIME CMD
0 S kbosa 4318 4317 1 0O 80 g - 1157 - 1%:37 pts/0 00:00:00 -tcsh
0 R kbosa 4543 4318 0o 0o 80 0o - 599 - 1%:55 pts/0 00:00:00 ps —-1fP
S ps Tux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
tdhughes 19259 0.0 0.1 2448 1356 pts/4 S 20:29 0:00 -bash
tdhughes 19334 0.0 0.0 1732 B&0 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19336 0.0 0.0 1928 780 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19337 18.0 2.4 26872 24856 pts/4 24 20:33 0:47 /home/tdhughes/pv
tdhughes 19338 18.0 2.3 26872 24696 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19341 17.9 2.3 26872 24556 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19400 0.0 0.0 2544 £32 pts/4 24 20:38 0:00 ps Tux
tdhughes 19401 0.0 0.1 2448 1356 pts/4 24 20:38 0:00 -bash

25

Example of the Usage ps Utility

Karoly.Bosa@ jku.at
$ ps -f
UID PID PPID C STIME TTY TIME CMD
cameron 2214 2212 0 21:03:35 pts/12 0:00 -ksh
cameron 2396 2214 2 11:55:49 pts/12 0:01 nedit
5 ps -1f
F & UID PID PPID PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
8 5 camercn 2214 2212 51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00 -ksh
8 5 camercn 2396 2214 53 24 704747b8 843 70152aba 11:55:49 pts/12 0:01 nedit
s ps -1fP
F 5 UID PID PPID C PRI NI ADDE SZ WCHAN STIME TTY TIME CMD
0 5 kbosa 4318 4317 0 80 o - 1157 - 1%:37 pts/0 00:00:00 -tecsh
0 R kbosa 4543 4318 0 80 0o - 599 - 1%:55 pts/0 00:00:00 ps —-1fP
S ps Tux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
tdhughes 19259 0.0 0.1 2448 1356 pts/4 s 20:29 0:00 -bash
tdhughes 19334 0.0 0.0 1732 B&0 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19336 0.0 0.0 1928 780 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19337 18.0 2.4 26872 24856 pts/4 24 20:33 0:47 /home/tdhughes/pv
tdhughes 19338 18.0 2.3 26872 24696 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19341 17.9 2.3 26872 24556 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19400 0.0 0.0 2544 £S52 pts/4 R 20:38 0:00 ps Tux
tdhughes 19401 0.0 0.1 2448 1356 pts/4 R 20:38 0:00 -bash

26

Example of the Usage ps Utility

I Karoly.Bosa@ jku.at
$ ps -f
UID PID PPID C STIME TTY TIME CMD
cameron 2214 2212 0 21:03:35 pts/12 0:00 -ksh
cameron 2396 2214 2 11:55:49 pts/12 0:01 nedit
5 ps -1f
F & UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
8 S cameron 2214 2212 0 51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00 -ksh
B8 S cameron 2396 2214 1 53 24 704747b8 843 70152aba 11:55:49 pts/12 0:01 nedit
s ps -1fP
F 5 UID PID PPID PSR C PRI NI ADDE SZ WCHAN STIME TTY TIME CMD
0 S kbosa 4318 4317 1 0O 80 0 - 1157 - 1%:37 pts/0 00:00:00 -tecsh
0 R kbosa 4543 4318 0 0 80 0 - 599 - 1%:55 pts/0 00:00:00 ps —-1fP
S ps Tux
USER PID VSZ RSS TTY START TIME COMMAND
tdhughes 19259 0.0 0.1 2448 1356 pts/4 S 20:29 0:00 -bash
tdhughes 19334 0.0 0.0 1732 B&0 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19336 0.0 0.0 1928 780 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19337 18.0 2.4 26872 24856 pts/4 24 20:33 0:47 /home/tdhughes/pv
tdhughes 19338 18.0 2.3 26872 24696 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19341 17.9 2.3 26872 24556 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19400 0.0 0.0 2544 £S52 pts/4 R 20:38 0:00 ps Tux
tdhughes 19401 0.0 0.1 2448 1356 pts/4 R 20:38 0:00 -bash

27

Example of the Usage ps Utility

I Karoly.Bosa@ jku.at

S ps Tux
USER PID 3CPU 3MEM VEZ RSS TTY ZTAT START TIME COMMAND
tdhughes 19255 0.0 0.1 2448 1356 pts/4 S 20:29 0:00 -bash
tdhughes 19334 0.0 0.0 1732 B&0 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19336 0.0 0.0 1928 780 pts/4 (= 20:33 0:00 /home/tdhughes/pv
tdhughes 19337 18.0 2.4 26872 24856 pts/4 24 20:33 0:47 /home/tdhughes/pv
tdhughes 19338 18.0 2.3 26872 24696 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19341 17.9 2.3 26872 24556 pts/4 R 20:33 0:47 /home/tdhughes/pv
tdhughes 19400 0.0 0.0 2544 £S52 pts/4 R 20:38 0:00 ps Tux
tdhughes 19401 0.0 0.1 2448 1356 pts/4 R 20:38 0:00 -bash

Status of Process Description

D Uninterruptible sleep (usually 1/0)

R Running or runnable (on run queue)

S Interruptible sleep (waiting for an event to complete)

T Stopped either by a job control signal or because it is being traced

Z “Zombie” process, terminated with no parent

The STAT header can reveal additional information about the status of the process:
d D (BSD) Disk wait
P: (BSD) Page wait

a
- Q
0 x (System V) Growing: waiting for memory 0
1w (BSD) Swapped out 0
d

E: (AIX) Available kernel process

w: (BSD) Niced: execution priority lowered
=1 (BSD) Niced: execution priority artificially raised
<! (Linux) High-priority process

L: (Linux) Pages are locked in memory

28

Creating Processes

I Karoly.Bosa@ jku.at

» fork() - function creates a new process. The new process (child process) shall

be an exact copy of the calling process (parent process) except as some minor
things (e.g.:process id).

» exec() - The exec family of functions replaces the current process image with a
new process image.

» system() — executes a command specified in the argument string and
returns after the command has been completed.

e posix_spawn() - create child processes with more fine-grained control during
creation...

Remark: These functions also control the attributes that the child process inherits
from the parent process, e.g.:

File descriptors, scheduling policy, process group id,

user and group id, signal mask. 29

Using the fork() Function Call

I Karoly.Bosa@ jku.at

#include <unistd.h>

pid_t fork(void);
» |t creates a new process that is a duplication of the calling process, the parent.
« The fork() returns two values if it succeeds:

It returns 0 to the child process and

it returns the PID of the child to the parent process.

« Both processes continue to execute from the instruction immediately following
the fork() call.

« The fork() fails if the system does not have the resources to create another
process.

30

Using the exec() Family of System Calls

I Karoly.Bosa@ jku.at

« The exec family of functions replaces the calling process image with a new
pI‘OCGSS image_ #include <unistd.h>

int execl(const char *path,const char *arg0,.../*,(char *}0 */);
int execle(const char *path,const char *arg0,.../*,

(char *)0 *,char *const envpl[]*/);
int execv(const char *path,char *const argl[]);
int execlp(const char *file,const char *arg0,.../*,(char *)0 */);
int execve(const char *path,char *const argl[],

char *const envpl[]):;
int execvp(const char *file,char *const argl[]);

« The new process image is a regular executable file:
» The executable can be specified as a path or a filename.
» These functions can pass command-line arguments to the new process.
» Environment variables can also be specified.

« Usually there is no return value if the function is not successful, because the
process image that contained the call to the exec is overwritten.

« All of the exec() functions can fail under these conditions:
« Permissions are denied.
» Files do not exist.
» File is not executable 31
* Problems with symbolic links

Example for fork() and execl() Calls

I Karoly.Bosa@ jku.at

* The exec functions are often used together with the fork()

#include <unistd.h>
/...
RetVal = fork();
If (RetVal == 0) {
execl(*/bin/ls”, “Is”, “-1”, NULL);

}
/...

« Remark: If RetVal is 0, then it is the child process.

32

Execl Functions

I Karoly.Bosa@ jku.at

« The execl() , execle() , and execlp() functions pass the command-line arguments
as a list.

« The number of command - line arguments should be known at compilation time

* int execl(const char *path, const char *arg0,.../*,(char *)0 */);

* int execle(const char *path, const char *arg0,.../*,(char *)0 *, char *const envp[]*/);
envp[] parameter contains the new environment for the new process. It is a
pointer to a null-terminated array of null-terminated strings. Each string has the
form: name=value , e.g.:

char *const envp[] = { “PATH=/opt/kde5:/sbin”, “HOME=/home” ,NULL};

* int execlp(const char *file, const char *arg(,.../*,(char *)0 */);

file is the name of the program executable. It uses the PATH environment
variable to locate the executables.

33

Execv Functions

I Karoly.Bosa@ jku.at

« The execv() , execve() , and execvp() functions pass the command-line arguments
in a vector of pointers to null-terminated strings.

« The number of command-line arguments should be known at compilation time.
* int execv(const char *path,char *const arg[]);
* int execve(const char *path,char *const arg[],char *const envp[]);

This function is identical to execv() except that it has the additional parameter
envp[] described earlier.

* int execvp(const char *file,char *const arg[]);

file is the name of the program executable.

34

Examples for Exec Functions

I Karoly.Bosa@ jku.at

char *const envp[] = { “HOME=/home”,NULL };

execl(“/bin/ls”, ’Is”, ’-1”, NULL);
execle(“/bin/Is”, ’1s”, ’-17, “SHOME”, NULL, envp);
eXGClp(“ls,,’ 7718’9’ 77_177, NULL);

char *const arg[] = {“du”, “-h”, "/etc”, “/root”, NULL};
char *const envp[] = { “HOME=/home”, NULL};

execv(“/usr/bin/du”, arg);
execve(*“/usr/bin/du”, arg, envp);
execvp(“du”, arg);

35

Determining the Restrictions of exec() Functions

I Karoly.Bosa@ jku.at

« There is a limit on the size that argv[] and envp[] can be when passed to the
exec() functions.

« The sysconf() can be used to determine these limitations.

» To determine the maximum size of the command-line arguments plus the size of
environment variables for the functions:

#include < unistd.h >
/..

sysconf (_SC_ARG_MAX);

« To determine the maximum number of simultaneous processes allowed per user
id:
sysconf (_SC_CHILD_MAX);

36

Using system() Functions to Spawn Processes

I Karoly.Bosa@ jku.at

« The system() function executes a fork() , and the child process calls an exec()
with a shell that executes the given command or program.

#include <stdlib.h>

int system(const char *string);

« The string parameter can be a system command or the name of an executable
file.

« Errors can happen at several levels:
» The function returns the value127 if the exec() fails,

« -1 if some other error occurs and

» the return code of the command is returned if the function succeeds.

37

The function posix_spawn()
L Karoly.Bosa@ jku.at

#include <spawn.h>

int posixX_spawn(pid_t *restrict pid, const char *restrict path,
const posix spawn_file actions_t *file_actions,
const posix_ spawnattr t *restrict attrp,
char *const argv[restrict],
char *const envpl[restrict]);
int posix_spawnp(pid_t *restrict pid, const char *restrict file,
const posix spawn_file actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv([restrict],
char *const envpl[restrict]);

Remark: POSIX functions used to spawn and manage processes are contained by the
header spawn.h. 38

The file_actions Parameter

I Karoly.Bosa@ jku.at

« The file_actions parameter is a pointer to a posix_spawn_file _actions_t
structure:

struct posix_spawn_file_actions_t{
{
int __allocated;
int __used;
struct __spawn_action *actions;
int __pad[16];

« This data structure that contains information about the actions to be performed
in the new process with respect to file descriptors.

39

File Action Attribute Functions I.

Karoly.Bosa@ jku.at

nt
posix_spawn_file_actions_addclose
(posix_spawn_file_actions_t

*file_actions, int fildes);

Adds a close() action to a spawn file
action object specified by file_actions.
This causes the file descriptor fildes to be
closed when the new process is
spawned using this file action object.

int
posix_spawn_file_actions_addopen
(posix_spawn_file_actions_t
*f1le_actions, int fildes,

const char *restrict path,

int oflag, mode_t mode);

Adds an open() action to a spawn file
action object specified by file_actions.
This causes the file named path with
the returned file descriptor fildes to be
opened when the new process is
spawned using this file action object.

int
posix_spawn_file_actions_adddup?2
(posix_spawn_file_actions_t
*f1le_actions, int fildes,

int newfildes);

Adds a dup?2() action to a spawn file
action object specified by file_actions.
This causes the file descriptor fildes to
be duplicated with the file descriptor
newfildes when the new process is
spawned using this file action object.

40

File Action Attribute Functions Il.

Karoly.Bosa@ jku.at

nt
posix_spawn_file_actions_destroy
(posix_spawn_file_actions_t

*file_actions);

Destroys the specified file_actions
object. This causes the object to be
uninitialized. The object can then
be reinitialized using
posix_spawn_file_actions_init().

nt
posix_spawn_file_actions_init
(posix_spawn_file_actions_t

*file_actions);

Initializes the specified file_actions
object. Once initialized, it contains
no file actions to be performed.

41

The attrp Parameter

I Karoly.Bosa@ jku.at

« The attrp parameter points to a posix_spawnattir_t structure:

struct posix_spawnattr_t

{
short int __flags;
pid_t _ pgrp;
sigset_t __sd;
sigset_t __ss;
struct sched_param __sp;
int __policy;
int __pad[16];

« This structure contains information about the scheduling policy, process group,
signals, and flags for the new process.

42

The attributes of the posix_spawnattr_t Structure

I Karoly.Bosa@ jku.at

o _ flags : Used to indicate which process attributes are to be modified in the
spawned process. They are bitwise - inclusive OR of 0 or more of the following:
. POSIX_SPAWN_RESETIDS
. POSIX_SPAWN_SETPGROUP
. POSIX_SPAWN_SETSIGDEF
. POSIX_SPAWN_SETSIGMASK
. POSIX_SPAWN_SETSCHEDPARAM
. POSIX_SPAWN_SETSCHEDULER

 _ pegrp : The id of the process group to be joined by the new process.

« _ sd: Represents the set of signals to be forced to use default signal handling
by the new process.

» _ ss: Represents the signal mask to be used by the new process.
« _ sp : Represents the scheduling parameter to be assigned to the new process.

« _ policy : Represents the scheduling policy to be used by the new process.
43

Spawn Process Attributes Functions I.

Karoly.Bosa@ jku.at

int posix_spawnattr_getflags
(const posix_spawnattr_t *restrict

attr, short *restrict flags);

Returns the value of the __ flags
attribute stored in the specified attr
object.

int posix_spawnattr_setflags
(posix_spawnattr_t *attr,

short flags);

Sets the value of the __ flags
attribute stored in the specified attr
object to flags.

int posix_spawnattr_getpgroup
(const posix_spawnattr_t *restrict

attr, pid_t *restrict pgroup);

Returns the value of the _ pgroup
attribute stored in the specified attr
object and stores it in pgroup.

44

Spawn Process Attributes Functions Il.

Karoly.Bosa@ jku.at

int posix_spawnattr_setpgroup
(posix_spawnattr_t *attr,

pid_t pgroup);

Sets the value of the __ pgroup
attribute stored in the specified attr
object to pgroup if POSIX_
SPAWN_SETPGROUP is set in
the _ flags attribute.

int posix_spawnattr_getschedparam
(const posix_spawnattr_t
*restrict attr, struct sched_param

*restrict schedparam);

Returns the value of the __sp
attribute stored in the specified attr
object and stores it in schedparam.

int posix_spawnattr_setschedparam
(posix_spawnattr_t *attr,
const struct sched_param *restrict

schedparam);

Sets the value of the __sp attribute
stored in the specified attr object to
schedparam if POSIX_SPAWN _
SETSCHEDPARAM is set in the
__flags attribute.

45

Spawn Process Attributes Functions lll.

Karoly.Bosa@ jku.at

int posix_spawnattr_getschedpolicy
(const posix_spawnattr_t *restrict

attr, int *restrict schedpolicy);

Returns the value of the __ policy
attribute stored in the specified attr
object and stores it in schedpolicy.

int posix_spawnattr_setschedpolicy
(posix_spawnattr_t *attr,

int schedpolicy);

Sets the value of the __ policy
attribute stored in the specified attr
object to schedpolicy if
POSIX_SPAWN _
SETSCHEDULER is set in the
__flags attribute.

int posix_spawnattr_getsigdefault
(const posix_spawnattr_t *restrict
attr, sigset_t *restrict

sigdefault);

Returns the value of the sd
attribute stored in the specified attr
object and stores it in sigdefault.

46

Spawn Process Attributes Functions IV.

Karoly.Bosa@ jku.at

int posix_spawnattr_setsigdefault
(posix_spawnattr_t *attr,
const sigset_t *restrict

sigdefault);

Sets the value of the sd attribute
stored in the specified attr object to
sigdefault if POSIX_SPAWN
SETSIGDEF is setin the __ flags
attribute.

int posix_spawnattr_getsigmask
(const posix_spawnattr_t *restrict

attr, sigset_t *restrict sigmask);

Returns the value of the _ ss
attribute stored in the specified attr
object and stores it in sigmask.

int posix_spawnattr_setsigmask
(posix_spawnattr_t *restrict attr,

const sigset_t *restrict sigmask);

Sets the value of the _ ss attribute
stored in the specified attr object to
sigmask if POSIX _SPAWN
SETSIGMASK is set in the _ flags
attribute.

47

Spawn Process Attributes Functions V.

Karoly.Bosa@ jku.at

int posix_spawnattr_destroy

0SIX_Spawnattr_t *attr);
(p p

Destroys the specified atir object.
The object can then become
reinitialized using
posix_spawnattr_init().

int posix_spawnattr_init

(posix_spawnattr_t *attr);

Initializes the specified attr object
with default values for all of the
attributes contained in the
structure.

48

A Simple posix_spawn() Example

I Karoly.Bosa@ jku.at

#include <spawn.h>
#include <stdio.h>
#include <errno.h>
#include <iostream>

{
Sl
posix spawnattr_t X;
posix spawn_file actions_t ¥;
pid t piqd;
char * argv[] = {"/bin/ps","-1f",NULL};
char * envp[] = {"PROCESSES=2"};
posix_ spawnattr_init (&X);
posix spawn_file actions_init (&Y);
posix spawn(&Pid, "/bin/ps", &Y, &X,argv, envp) ;
perror ("posix_spawn") ;
cout << "spawned PID: " << Pid << endl;
fle..
return(0) ;

}

49

Who Is the Parent? Who Is the Child?

I Karoly.Bosa@ jku.at

« There are two functions that return the process id (PID) of the process and
parent process:

#include <unistd.h>

pid t getpid(wvoid);
pid t getppid(wveid):

o getpid() returns the process id of the calling process.
« getppid() returns the parent id of the calling process.

« These functions are always successful; therefore no errors are defined.

50

