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Processes:

• What is a process?

• Why Processes and Not Threads?

• Process Control Block

• The address space/image of a process

• Process States
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• Process Scheduling

• Context Switch

• Monitoring Processes with the ps Utility

• Creating Processes

• Calls Regarding Processes

• Introduction into Process Tracing



What Is a Process?
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• A process is a unit of work created by the operating system:

• it must have an address space assigned to it by the operating system.

• It must have a process id. 

• It must have a state and an entry in the process table.

• A process has a set of executing instructions that resides in the address space 
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• A process has a set of executing instructions that resides in the address space 

of that process.

• It is important to note that processes and programs are not necessarily 

equivalent. 



Why Processes and Not Threads?
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• Threads turn out to be easier to program because threads share the 
same address space (communication and synchronization between 
threads much easier).

• But:
• Processes have their own address space (provide a certain amount security 

and isolation).
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and isolation).

• For multiuser applications, each user’s process must be isolated.

• Operating system resources are assigned primarily to processes and then 

shared by threads.

• The number of open files that threads may use is limited to how many open 

files a single process can have.



Type of Processes 
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• Processes that execute system code are called system processes ,or kernel 

processes.

• User processes execute their own code, and sometimes they make system 

function calls:

• When a user process executes its own code, it is in user mode.
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• When a user process executes its own code, it is in user mode.

• In kernel mode, a user process makes a system function call (for 

example, read() , write() , or open() ), it is executing operating system 

instructions.

If the processor is given to the kernel to complete the system call, it 

cannot be preempted by any user processes.

• Remark: preemption is the act of temporarily interrupting a task being carried 

out by the CPU, and with the intention of resuming the task at a later time. 



Process Control Block I.
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• Processes have characteristics that identify them and determine their 
behavior during execution. 

• The kernel maintains data structures and provides system functions that 
allow the user to have access to this information. 

• Some information is stored in the process control block (PCB) .

6

• PCB is needed for the operating system to manage each process.

• When the operating system switches between a process utilizing the 
CPU to another process,  …

• … it saves the current state of the executing process and its 
context to the PCB,

• in order to restart the process the next time it is assigned to the 
CPU.



Process Control Block II.
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• PCB information includes:

process control –Current state and priority of the process

–Pointers to allocated resources

–Pointers to location of the process’s memory

–Pointer to the process’s parent and child 

processes
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processes

state of the 

processor

–Processor utilized by process

–Control and status registers

–Stack pointers

process 
identification

–Process, parent, and child identifiers



The address space of a process I.
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The address space of a process II.
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• The address space of a process is 

virtual.

• The segments of the process’s virtual 

address space are contiguous blocks 

of memory.

• Physical address space is broken up 
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• Physical address space is broken up 

into chunks called pages . Each page 

has a unique page frame 

number(PFN).

• Each segment is broken up virtual 

pages.

• The virtual page frame number 

(VPFN) is used as an index into the 

process’s page tables which contain 

PFNs.



Process Table
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• The operating system has a table for all the resources of the computer that it 

including: processes, devices, memory, and files.

• The process table has an entry for each process image in memory.
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• Each entry contains:

• the process and parent process id; 

• the real and effective user id and 

group id; 

• a list of pending signals; 

• the location of the PCB, text, data, and 

stack segments and; 

• the current state of the process.



Process States 
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• During a process’s execution, it changes its state. 

• The state of the process is the current condition or status of the process. 

• In a POSIX - compliant environment, a process can be in the following states:

• Running

• Runnable (ready)
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• Zombied

• Waiting (blocked)

• Stopped

• State transition is the circumstance that causes the process to change its state.



State Transitions I.
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READY->RUNNING

(dispatch)

The process is assigned to the processor.

RUNNING->

SLEEPING (block)

The process gives up the processor before the time 

slice has run out. The process may need to wait for an 

event or has made a system call, for example, a 

request for I/O. The process is placed in a queue with 

other sleeping processes.
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State Transitions II.
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RUNNING->

READY(preempt)

The process has been preempted before the time slice 

ran out. This can occur if a process with a higher 

priority is runnable. The process is placed back in the 

ready queue.

RUNNING->

READY(timer

runout)

The time slice the process assigned to the processor 

has run out. The process is placed back in the ready 

queue.
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State Transitions III.
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SLEEPING->READY

(unblock)

The event the process was waiting for has occurred, 

or the system call has completed. For example, the 

I/O request is filled. The process is placed back in the 

ready queue.

RUNNING->

STOPPED

The process gives up the processor because it has 

received a signal to stop.
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State Transitions IV.
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STOPPED->READY The process has received the signal to continue and is 

placed back in the ready queue.

RUNNING->

ZOMBIED

The process has been terminated and awaits the 

parent to retrieve its exit status from the process table.
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State Transitions V.
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ZOMBIED->EXIT The parent process has retrieved the exit status, and 

the process exits the system.

RUNNING->EXIT The process has terminated, the parent has retrieved 

the exit status, and the process exits the system.
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Process Scheduling: Multilevel priority Queue 
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• Each process is given a 

priority class and placed 

in a priority queue with 

other runnable processes 

with the same priority 

class.

• The scheduler assigns 

STATIC 

PRIORITIES
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• The scheduler assigns 

the process at the head 

of the nonempty highest 

priority queue to the 

processor.

• Priorities can be dynamic or static in Linux/Unix: 

•Once a static priority of a process is set, it cannot be changed. 

•Dynamic priorities (nice value) can be changed.

• System processes have a higher priority than user processes.



Scheduling Policy: First In, First Out (FIFO)
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• With a FIFO scheduling policy, processes are assigned the processor according 

to the arrival time in the queue.

• A process can make a system call and give up the processor to another process 

with the same priority level. The process is then placed at the end of its priority 

queue.



Scheduling Policy: Round Robin (RR)
Karoly.Bosa@jku.at

19

• RR scheduling is the same as FIFO scheduling with one exception: When the 

time slice expires, the process is placed at the back of the queue and the next 

process in the queue is assigned the processor.



Scheduling Policy: OTHER
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• It is defined as architecture dependent scheduling in POSIX. In Linux/Unix 

systems it works as follows:

• The Linux kernel implements a dynamic priority ranges. 

• This is the nice value, a number from –20 to 19 with a default of zero. 

• This kind of priority applies only to conventional processes (with 0 static 
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• This kind of priority applies only to conventional processes (with 0 static 

priority).

• Processes with a lower nice value (higher priority) run before processes with 

a higher nice value (lower priority). 

• If a process is ready to run, but its execution is denied, its nice value is 

decremented in every quantum.



Context Switch
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• A context switch occurs when the use of the processor is switched from one 

process to another process.

• A context switch occurs when a:

• Process is preempted

• Process voluntarily gives up the processor

• Process makes an I/O request or needs to wait for an event

• Process switches from user mode to kernel mode
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• When a context switch occurs, 

• the system saves the context of the current running process and 

• Restores the context of the next process selected to use the processor.



Monitoring Processes with the ps Utility
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• The ps utility generates a report that summarizes execution statistics for the 

current processes.
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Usage of ps Utility
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To see every process on the system:

–ps –e (using standard syntax)

–ps ax (using BSD syntax)

Some options:

• -u username : List the processes belong 

to the given user
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–ps ax (using BSD syntax)

To print a process tree:

–ps –ejH

–ps axjf

Some options:

• -t term : List the processes associated 

with the terminal specified by term.

• T : (Linux) All processes in this terminal

to the given user

• - e : All current processes

• r : (Linux) Only running processes

• - f : Full listings

• - l : Long format

• -o format: specify output format



Example of the Usage ps Utility
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Example of the Usage ps Utility
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Example of the Usage ps Utility
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Example of the Usage ps Utility
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Example of the Usage ps Utility
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The STAT header can reveal additional information about the status of the process:



Creating Processes 
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• fork() - function creates a new process. The new process (child process) shall 

be an exact copy of the calling process (parent process) except as some minor 

things (e.g.:process id).

• exec() - The exec family of functions replaces the current process image with a 

new process image.  

• system() – executes a command specified in the argument string and 

returns after the command has been completed.
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returns after the command has been completed.

• posix_spawn() - create child processes with more fine-grained control during 

creation…

Remark: These functions also control the attributes that the child process inherits 

from the parent process, e.g.:

File descriptors, scheduling policy, process group id, 

user and group id, signal mask. 



Using the fork() Function Call
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• It creates a new process that is a duplication of the calling process, the parent.

• The fork() returns two values if it succeeds:

• It returns 0 to the child process and 
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• it returns the PID of the child to the parent process.

• Both processes continue to execute from the instruction immediately following 

the fork() call.

• The fork() fails if the system does not have the resources to create another 

process.



Using the exec() Family of System Calls
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• The exec family of functions replaces the calling process image with a new 

process image.

• The new process image is a regular executable file:
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• The new process image is a regular executable file:

• The executable can be specified as a path or a filename. 

• These functions can pass command-line arguments to the new process.

• Environment variables can also be specified.

• Usually there is no return value if the function is not successful, because the 

process image that contained the call to the exec is overwritten.

• All of the exec() functions can fail under these conditions:

• Permissions are denied.

• Files do not exist.

• File is not executable

• Problems with symbolic links



Example for fork() and execl() Calls
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• The exec functions are often used together with the fork()

#include <unistd.h>

//...

RetVal = fork();

If (RetVal == 0) {

execl(“/bin/ls”, “ls”, “-l”, NULL);
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execl(“/bin/ls”, “ls”, “-l”, NULL);

}

//…

• Remark: If RetVal is 0, then it is the child process.



Execl Functions
Karoly.Bosa@jku.at

• The execl() , execle() , and execlp() functions pass the command-line arguments 

as a list.

• The number of command - line arguments should be known at compilation time

• int execl(const char *path, const char *arg0,.../*,(char *)0 */);

• int execle(const char *path, const char *arg0,.../*,(char *)0 *, char *const envp[]*/);
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envp[]  parameter contains the new environment for the new process. It  is a 

pointer to a null–terminated array of null-terminated strings. Each string has the 

form: name=value , e.g.:
char *const envp[] = {“PATH=/opt/kde5:/sbin”, “HOME=/home”,NULL};

• int execlp(const char *file, const char *arg0,.../*,(char *)0 */);

file is the name of the program executable. It uses the PATH environment 

variable to locate the executables. 



Execv Functions
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• The execv() , execve() , and execvp() functions pass the command-line arguments 

in a vector of pointers to null-terminated strings. 

• The number of command-line arguments should be known at compilation time.

• int execv(const char *path,char *const arg[]);

• int execve(const char *path,char *const arg[],char *const envp[]);
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This function is identical to execv() except that it has the additional parameter 

envp[] described earlier.

• int execvp(const char *file,char *const arg[]);

file is the name of the program executable.



Examples for Exec Functions
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char *const envp[] = {“HOME=/home”,NULL};

execl(“/bin/ls”, ”ls”, ”-l”, NULL);

execle(“/bin/ls”, ”ls”, ”-l”, “$HOME”, NULL, envp);

execlp(“ls”, ”ls”, ”-l”, NULL);
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char *const arg[] = {“du”, “-h”, ”/etc”,  “/root”, NULL};

char *const envp[] = {“HOME=/home”, NULL};

execv(“/usr/bin/du”, arg);

execve(“/usr/bin/du”, arg, envp);

execvp(“du”, arg);



Determining the Restrictions of exec() Functions
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• There is a limit on the size that argv[] and envp[] can be when passed to the 

exec() functions. 

• The sysconf() can be used to determine these limitations.

• To determine the maximum size of the command-line arguments plus the size of 

environment variables for the functions:

#include < unistd.h >
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#include < unistd.h >

//…

sysconf (_SC_ARG_MAX);

• To determine the maximum number of simultaneous processes allowed per user 

id:
sysconf (_SC_CHILD_MAX);



Using system() Functions to Spawn Processes
Karoly.Bosa@jku.at

• The system() function executes a fork() , and the child process calls an exec()

with a shell that executes the given command or program.

• The string parameter can be a system command or the name of an executable 

file.
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• Errors can happen at several levels:

• The function returns the value127 if the exec() fails,

• - 1 if some other error occurs and  

• the return code of the command is returned if the function succeeds.



The function posix_spawn()
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Remark: POSIX functions used to spawn and manage processes are contained by the 

header spawn.h.



The file_actions Parameter 
Karoly.Bosa@jku.at

• The file_actions parameter is a pointer to a posix_spawn_file_actions_t 

structure:

struct posix_spawn_file_actions_t{

{

int __allocated;

int __used;

struct __spawn_action *actions;

int __pad[16];
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int __pad[16];

};

• This data structure that contains information about the actions to be performed 

in the new process with respect to file descriptors.



File Action Attribute Functions I.
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int

posix_spawn_file_actions_addclose

(posix_spawn_file_actions_t

*file_actions, int fildes);

Adds a close() action to a spawn file 

action object specified by file_actions. 
This causes the file descriptor fildes to be 

closed when the new process is 

spawned using this file action object.

int

posix_spawn_file_actions_addopen

(posix_spawn_file_actions_t

Adds an open() action to a spawn file 

action object specified by file_actions. 

This causes the file named path with 
the returned file descriptor fildes to be 
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(posix_spawn_file_actions_t

*file_actions, int fildes,

const char *restrict path,

int oflag, mode_t mode);

the returned file descriptor fildes to be 

opened when the new process is 

spawned using this file action object.

int

posix_spawn_file_actions_adddup2

(posix_spawn_file_actions_t

*file_actions, int fildes,

int newfildes);

Adds a dup2() action to a spawn file 

action object specified by file_actions. 
This causes the file descriptor fildes to 

be duplicated with the file descriptor 
newfildes when the new process is 

spawned using this file action object.



File Action Attribute Functions II.
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int

posix_spawn_file_actions_destroy

(posix_spawn_file_actions_t

*file_actions);

Destroys the specified file_actions 

object. This causes the object to be 

uninitialized. The object can then 

be reinitialized using 

posix_spawn_file_actions_init().
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int

posix_spawn_file_actions_init

(posix_spawn_file_actions_t

*file_actions);

Initializes the specified file_actions 

object. Once initialized, it contains 

no file actions to be performed.



The attrp Parameter 
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• The attrp parameter points to a posix_spawnattr_t structure:

struct posix_spawnattr_t

{

short int __flags;

pid_t __pgrp;

sigset_t __sd;

sigset_t __ss;

struct sched_param __sp;
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struct sched_param __sp;

int __policy;

int __pad[16];

}

• This structure contains information about the scheduling policy, process group, 

signals, and flags for the new process.



The attributes of the posix_spawnattr_t Structure 
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• __flags : Used to indicate which process attributes are to be modified in the 

spawned process. They are bitwise - inclusive OR of 0 or more of the following:
• POSIX_SPAWN_RESETIDS

• POSIX_SPAWN_SETPGROUP

• POSIX_SPAWN_SETSIGDEF

• POSIX_SPAWN_SETSIGMASK

• POSIX_SPAWN_SETSCHEDPARAM

• POSIX_SPAWN_SETSCHEDULER
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• __pgrp : The id of the process group to be joined by the new process.

• __sd : Represents the set of signals to be forced to use default signal handling 

by the new process.

• __ss : Represents the signal mask to be used by the new process.

• __sp : Represents the scheduling parameter to be assigned to the new process.

• __policy : Represents the scheduling policy to be used by the new process.



Spawn Process Attributes Functions I.
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int posix_spawnattr_getflags

(const posix_spawnattr_t *restrict

attr, short *restrict flags);

Returns the value of the __flags 

attribute stored in the specified attr 

object.

int posix_spawnattr_setflags

(posix_spawnattr_t *attr,

Sets the value of the __flags 

attribute stored in the specified attr 
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(posix_spawnattr_t *attr,

short flags);

attribute stored in the specified attr 

object to flags.

int posix_spawnattr_getpgroup

(const posix_spawnattr_t *restrict

attr, pid_t *restrict pgroup);

Returns the value of the __pgroup 

attribute stored in the specified attr 

object and stores it in pgroup.



Spawn Process Attributes Functions II.
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int posix_spawnattr_setpgroup

(posix_spawnattr_t *attr,

pid_t pgroup);

Sets the value of the __pgroup 

attribute stored in the specified attr 

object to pgroup if POSIX_ 

SPAWN_SETPGROUP is set in 

the __flags attribute.

int posix_spawnattr_getschedparam

(const posix_spawnattr_t

Returns the value of the __sp 

attribute stored in the specified attr 
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(const posix_spawnattr_t

*restrict attr, struct sched_param

*restrict schedparam);

attribute stored in the specified attr 

object and stores it in schedparam.

int posix_spawnattr_setschedparam

(posix_spawnattr_t *attr,

const struct sched_param *restrict

schedparam);

Sets the value of the __sp attribute 

stored in the specified attr object to 

schedparam if POSIX_SPAWN_ 

SETSCHEDPARAM is set in the 

__flags attribute.



Spawn Process Attributes Functions III.
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int posix_spawnattr_getschedpolicy

(const posix_spawnattr_t *restrict

attr, int *restrict schedpolicy);

Returns the value of the __policy 

attribute stored in the specified attr 

object and stores it in schedpolicy.

int posix_spawnattr_setschedpolicy

(posix_spawnattr_t *attr,

Sets the value of the __policy 

attribute stored in the specified attr 
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(posix_spawnattr_t *attr,

int schedpolicy);

attribute stored in the specified attr 

object to schedpolicy if 

POSIX_SPAWN_ 

SETSCHEDULER is set in the 

__flags attribute.

int posix_spawnattr_getsigdefault

(const posix_spawnattr_t *restrict

attr, sigset_t *restrict

sigdefault);

Returns the value of the __sd 

attribute stored in the specified attr 

object and stores it in sigdefault.



Spawn Process Attributes Functions IV.
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int posix_spawnattr_setsigdefault

(posix_spawnattr_t *attr,

const sigset_t *restrict

sigdefault);

Sets the value of the __sd attribute 

stored in the specified attr object to 

sigdefault if POSIX_SPAWN_ 

SETSIGDEF is set in the __flags 

attribute.

int posix_spawnattr_getsigmask

(const posix_spawnattr_t *restrict

attr, sigset_t *restrict sigmask);

Returns the value of the __ss 

attribute stored in the specified attr 

object and stores it in sigmask.
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attr, sigset_t *restrict sigmask);
object and stores it in sigmask.

int posix_spawnattr_setsigmask

(posix_spawnattr_t *restrict attr,

const sigset_t *restrict sigmask);

Sets the value of the __ss attribute 

stored in the specified attr object to 

sigmask if POSIX_SPAWN_ 

SETSIGMASK is set in the __flags 

attribute.



Spawn Process Attributes Functions V.
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int posix_spawnattr_destroy

(posix_spawnattr_t *attr);

Destroys the specified attr object. 

The object can then become 

reinitialized using 

posix_spawnattr_init().

int posix_spawnattr_init

(posix_spawnattr_t *attr);

Initializes the specified attr object 

with default values for all of the 

attributes contained in the 

structure.
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structure.



A Simple posix_spawn() Example 
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Who Is the Parent? Who Is the Child?
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• There are two functions that return the process id (PID) of the process and 

parent process:
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• getpid() returns the process id of the calling process.

• getppid() returns the parent id of the calling process.

• These functions are always successful; therefore no errors are defined.


