
Introduction into Multicore
Programming

1

Programming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

Topic – Multicore Designs
Karoly.Bosa@jku.at

Four multicore designs from some of the computer industry’s leading chip

manufacturers:

• AMD Multicore Opteron

• Sun UltraSparc T1

• IBM Cell Broadband Engine (CBE)

2

• The Intel Core 2 Duo

Karoly.Bosa@jku.at

AMD Opteron

3

AMD Opteron

AMD Opteron Overview
Karoly.Bosa@jku.at

• entry level into AMD’s multicore

processor line,

• consists of two AMD 64 processors,

• compatible with Intel’s family of

processors,

4

processors,

• AMD’s Direct Connect Architecture

(DCA) with HyperTransport

technology

• L1 cache can be logically divided to

•I – Cache (for instructions) and

•D - Cache (for data)

The Direct Connect Architecture in Opteron
Karoly.Bosa@jku.at

• AMD’s DCA determines how the

CPUs communicate with each

other, memory and other I/O

devices.

• The DCA is a point-to-point

connection scheme, It does not

use the FSB(!).

5

use the FSB(!).

• The processors, memory controller, and

I/O are directly connected.

• This dedicated link approach avoids the potential performance problems

(bottlenecks) of the bus architectures.

• Each CPU can access the main memory of another processor, transparent to

the programmer (HT ports).

System Request Interface and Crossbar
Karoly.Bosa@jku.at

• The System Request Interface (SRI) manages and prioritizes the processor

requests to the crossbar switch.

• If the memory access is not local (off chip), then a routing table lookup

sends it to a HT port.

6

• The crossbar has five ports: to memory controller, to SRI, and to the three HT

ports.

• It is responsible for

packet routing.

The Opteron Is NUMA
Karoly.Bosa@jku.at

• The network interconnection is

accomplished by the Opteron

HyperTransport technology.

• But using the HyperTransport

technology, the CPUs are

directly connected to each other

7

directly connected to each other

and the I/O is directly

connected to the CPU.

• This ultimately gives you a performance gain over the typical UMA and SMP

configuration.

General NUMA Architecture

Karoly.Bosa@jku.at

The Sun UltraSparc T1 Multiprocessor

8

The Sun UltraSparc T1 Multiprocessor

Sun UltraSparc T1 Overview
Karoly.Bosa@jku.at

• The UltraSparc T1 is an eight - core CMP.

• It has support for chip-level multithreading (CMT). Each core is capable of

running four threads.

• By this T1 can handle up to 32 hardware threads � Eight cores with four

threads presents itself to an application as 32 logical processors(!).

9

• Checking how many processors are apparently available for the operating

system:

using namespace std;

#include < unistd.h >

#include < iostream >

int main(int argc,char *argv[])

{

cout < < sysconf(_SC_NPROCESSORS_CONF) < < endl;

return(0);

}

How many processors are available to the operating system

Karoly.Bosa@jku.at

• Compile and Link Instructions:

gcc -o sysconfCPUTest sysconfCPUTest.cc

• Hardware:
AMD Opteron Core 2, UltraSparc T1, CBE, Intel Core 2 Duo

• sysconf() can query system variables and parameters:

- _SC_NPROCESSORS_CONF � number of processors configured

10

- _SC_NPROCESSORS_MAX �maximum number of processors supported

Sun UltraSparc T1 Overview II
Karoly.Bosa@jku.at

• Eight Sparc V9 cores.

• cores are 64-bit

technology.

• Each core has L1

cache:

• 16K L1 instruction

cache and

11

cache and

• an 8K L1 data cache.

• Shared L2 cache (3MB)

• The eight cores all share a single floating-point unit (FPU).

• Each core has a six-stage pipeline: 1) Fetch, 2) Thread selection, 3) Decode,
4) Execute, 5) Memory access, 6) Write back

CPU Pipelining I.
Karoly.Bosa@jku.at

12

DDRAM Controller and L2 Cache
Karoly.Bosa@jku.at

13

•The UltraSparc T1 has four separate memory controllers.

•The L2 cache is divided on the T1 into four banks.

•Each controller is connected to one bank of L2 cache.

•The T1 can support up to 128GB of RAM.

The Sun and GNU gcc Compilers
Karoly.Bosa@jku.at

• Two of the most commonly used compilers for the UltraSparc T1 are

- the Sun C/C++ compiler (part of Sun Studio) and

- the GNU gcc, the standard open source C/C++ compiler.

• Sun’s compilers obviously have the best support for their processors,

• GNU gcc has a great deal of support for T1, with options that take advantage

14

• GNU gcc has a great deal of support for T1, with options that take advantage

of

- thread loop unrolling,

- vector operations,

- branch prediction and

- Sparc-specific platform options.

Karoly.Bosa@jku.at

The IBM Cell Broadband Engine (CBE)

15

CBE Overview
Karoly.Bosa@jku.at

16

• The CBE is a hybrid 9 core processor (heterogeneous multicore chip).

• It consists of two different types of processors:

• 1 PowerPC Processing Element (PPE) and

• 8 Synergistic Processor Element (SPE), each has its own local memory.

• Additionally one high-speed memory controller, one high–bandwidth element

interconnect bus, high-speed memory and I/O interfaces are integrated on chip.

CBE Overview
Karoly.Bosa@jku.at

17

• The CBE is a hybrid 9 core processor (heterogeneous multicore chip).

• It consists of two different types of processors:

• 1 PowerPC Processing Element (PPE) and

• 8 Synergistic Processor Element (SPE), each has its own local memory.

• Additionally one high-speed memory controller, one high–bandwidth element

interconnect bus, high-speed memory and I/O interfaces are integrated on chip.

CBE and Linux
Karoly.Bosa@jku.at

• CBE is very effective in a Linux environment (Playstation 3 comes with
ready-to-install Linux).

• Currently, there is a Fedora and a Yellow Dog distribution of Linux for the
CBE.

• The PPE element can be programmed using the standard GNU gcc
compiler.

• If you would like to check the number of processors (with sysconf), the

18

• If you would like to check the number of processors (with sysconf), the
output is 2, because:

• the SPEs are not directly accessible.

• the PPE is a CMP; it is a dual thread processor.

• There is a CBE SDK available for downloading from IBM that includes tools
necessary to compile the SPE code (It works x86, too).

• http://www.ibm.com/developerworks/power/cell/downloads.html

• http://librenix.com/?inode=7715 (another useful link)

IBM Full-System Simulator for the CBE
Karoly.Bosa@jku.at

• Download link:

http://www.alphaworks.ibm.com/tech/cellsystemsim/download?open&S_TACT=

105AGX59&S_CMP=GR

• Hardware Requirements:

• The simulator is available for 32-bit and 64-bit x86 and 64-bit PowerPC

systems.

• Certain simulator features are only available on 64-bit architectures.

19

• Certain simulator features are only available on 64-bit architectures.

• The system should have at least 1GB of memory available for use by the

simulator.

• Operating system:

• Fedora Linux Release 9.

• Software:

• The simulator requires the tcl, tk, and xterm packages to be installed prior to

installing the simulator.

POSIX Threads on CBE
Karoly.Bosa@jku.at

• Standard POSIX threads (pthreads) and process management can be
used with the PPE element,

• But the SPE has to be programmed using the thread library that ’ s
available as part of the CBE SDK.

20

• However the good news is the SPE thread calls are designed to be
compatible with pthreads.

CBE Memory Models
Karoly.Bosa@jku.at

• The PPE accesses memory

differently than the SPEs.

• CBE avoids the normal single bus

bottleneck potentials because the

SPEs each have their own local

memory.

21

• Each SPE depends on DMAs to

transfer data to and from the main

memory and other SPEs' local

memories.

• Simultaneous(!) data and code

transfers between the SPE local

stores and main storage.

Hidden from the Operating System
Karoly.Bosa@jku.at

• CBE elements must be directly addressed to get the maximum
performance.

• The standard Linux system calls can see the dual threads of the PPE,

• but they are not fully aware of the SPEs:

22

• but they are not fully aware of the SPEs:

• The developer must explicitly develop and compile code that works
with the SPEs,

• and then that code must be linked with the code from the PPE.

At the last point Linux knows how to handle the eight SPE processors.

Karoly.Bosa@jku.at

Intel Core 2 Duo Processor

23

Intel Core 2 Duo Overview
Karoly.Bosa@jku.at

• Some Intel multicore CPUs have dual cores, others have quad cores…

• Some multicore processors are enhanced with hyperthreading, giving each core

two logical processors.

• Core 2 Duo was introduced in 2006, has dual cores; it has no hyperthreading but

24

supports a 64 bit architecture.

• The chipset of the motherboard

moves data back and forth from

CPU to the various components

of the motherboard, including

- memory,

- graphics card and

- I/O devices.

Some More Words about Chipset
Karoly.Bosa@jku.at

The chipset comprises two chips: Northbridge and Southbridge.

• The Northbridge (or memory controller hub):

• Communicates directly with the CPU via the

Front Side Bus.

• Connects the CPUs with high-speed

devices such as main memory.

• Connects the CPUs with PCI-E slots and

25

• Connects the CPUs with PCI-E slots and

the Southbridge via an internal bus.

• The Southbridge (or I/O controller):

• Slower than the Northbridge.

• Responsible for the slower capabilities of the motherboard like the I/O

devices such as audio, disk interfaces, and so on.

• Connected to BIOS support via the Serial Peripheral Interface (SPI), six

PCI-E slots, and other I/O devices.

Intel’s PCI Express
Karoly.Bosa@jku.at

• PCI-E or PCI Express is a computer expansion card interface.

• The usual slot serves as a serial connection for sound, video, and
network cards on the motherboard.

• The PCI-E is a high-speed serial connection, which works more like a

26

• The PCI-E is a high-speed serial connection, which works more like a
network than a bus.

• It uses a switch that controls many point-to-point full-duplex
(simultaneous communication in both directions) serial connections
called lanes.

• There can be 4, 8, of 16 lanes per slot. Each lane has two pairs of
wires from the switch to the device — one pair sends data, and the
other pair receives data.

Core 2 Duo’s Instruction Set
Karoly.Bosa@jku.at

• The Core 2 Duo has increased performance of its processor by supporting

Streaming SIMD Extensions (SSE).

• This speeds up applications that utilize SIMD operations such as highly

intensive graphics, encryption and mathematical applications

• The processor has 16 registers used to execute SIMD instructions: 8 MMX and

8 XMM registers.

27

8 XMM registers.

Topic – Roles of the Operating Systems
Karoly.Bosa@jku.at

Roles of the operating systems:

• The Developer’s Interaction with the Operating System

• Core Operating System Services

• Decomposition Choices of Parallel Programs

• Kernel Mode and User Mode

• Processor Affinity

28

• Processor Affinity

What Part Does the Operating System Play?
Karoly.Bosa@jku.at

• Our focus on the operating system is the role it plays as a development
tool:

• Software interface: Providing a consistent and well defined
interface to the hardware resources of the computer.

• Resource management : Managing the hardware resources and

29

• Resource management : Managing the hardware resources and
other executing software applications, jobs, and programs

• the operating system provides a couple of software layers between the

developer’s program and the hardware resources connected to the computer.

• The two most important layers are called the Application Program Interface

(API) and the System Program Interface (SPI) .

The Developer ’ s Interaction with the Operating System

Karoly.Bosa@jku.at

30

The Developer ’ s Interaction with the Operating System

Karoly.Bosa@jku.at

31

The Developer ’ s Interaction with the Operating System

Karoly.Bosa@jku.at

32

The Developer ’ s Interaction with the Operating System

Karoly.Bosa@jku.at

33

The Developer ’ s Interaction with the Operating System

Karoly.Bosa@jku.at

34

Core Operating System Services
Karoly.Bosa@jku.at

• Process management

• Memory management

• Filesystem management

• I/O management

35

• I/O management

• Interprocess Communication Manager

Example for Decomposition Choices
Karoly.Bosa@jku.at

36

User Thread vs. Kernel Thread
Karoly.Bosa@jku.at

• Kernel thread:

• it is sometimes called a LWP (Lightweight Process) because it has less

overhead than a process.

• it is created and scheduled by the kernel.

• it is the "lightest" unit of kernel scheduling.

• at least one kernel thread exists within each process.

37

• the allowable number of kernel threads per process is limited.

• User thread:

• it is normally created by a threading library and scheduling is managed

by the threading library itself.

• All user threads belong to process that created them.

• The advantage of user threads is that they are portable.

• Kernel threads are often more expensive to create than user threads and the

system calls to directly create kernel threads are very platform specific.

Example for Decomposition Choices
Karoly.Bosa@jku.at

38

Example for Decomposition Choices
Karoly.Bosa@jku.at

39

What Is POSIX and Why Use It?
Karoly.Bosa@jku.at

• Portable Operating System Interface (POSIX) is a standard.

• It defines a standard operating system interface and environment,
including:

- a command interpreter (or “ shell ”) and

40

- common utility programs

to support applications portability at the source code level.

• The major operating system environments e.g.: ZOS, Solaris, AIX,
Windows, Mac OS X, Linux, HP-UX, IRIX, all claim basic support for the
POSIX standard.

Process Management
Karoly.Bosa@jku.at

• For our purposes, the process lifecycle is summarized as:

• Process creation

• Process scheduling/execution

• Process termination

• The operating system has to multitask the processes. Each process executes

until some amount of time has expired or until some event has occurred.

41

until some amount of time has expired or until some event has occurred.

• The interval of time a process is given to execute on a core is called a quantum.

• Each process is controlled by an associated scheduling policy and priority.

• We will use to our purposes four basic scheduling policies supported by the

POSIX standard:

SCHED_FIFO

SCHED_RR

SCHED_SPORADIC

SCHED_OTHER

User Mode vs. Kernel Mode
Karoly.Bosa@jku.at

• There are two distinct execution modes for the CPU in Linux:

• Kernel mode: it is assumed to be executing trusted software (the kernel

itself), and thus it can execute any instructions and reference any memory

addresses.

• User mode: a non-privileged mode in which each process starts out. It is

forbidden for processes in this mode to access those portions of memory

(i.e., RAM) that have been allocated to the kernel or to other programs.

42

(i.e., RAM) that have been allocated to the kernel or to other programs.

• When a user mode process wants to use a service that is provided by the kernel

(i.e., access system resources), it must switch temporarily into kernel mode,

which has root privileges.

• When the kernel has satisfied the process's request, it restores the process to

user mode.

• The standard procedure to switch from user mode to kernel mode is to call the

0x80 software interrupt.

SMP Support in Linux
Karoly.Bosa@jku.at

• SMP support was introduced with kernel version 2.0, and has improved steadily

ever since:

• The way Linux implements threads is to treat them at scheduling the same way

as any process.

• Some Linux distributions don't provide a ready−made SMP−aware kernel, which

means that you'll have to make one yourself.

43

means that you'll have to make one yourself.

• You can easily check the SMP support by the statement:

cat /proc/cpuinfo

• For detailed hardware specific support information see Enkh Tumenbayar, Linux
SMP HOWTO (http://tldp.org/HOWTO/SMP-HOWTO.html).

Processor Affinity
Karoly.Bosa@jku.at

• Processor affinity is the ability to direct a specific task, or process, to use a

specified core.

• Why is this useful?

• If the process is directed to always use the same core it is possible that the

process will run more efficiently because of the cache re-use.

44

Enkh Tumenbayar, Linux SMP HOWTO

process will run more efficiently because of the cache re-use.

• If one or two performance critical processes direct only to one core while all

other processes are directed to other cores.

Setting Processor Affinity in Vista
Karoly.Bosa@jku.at

45

Enkh Tumenbayar, Linux SMP HOWTO

Processor Affinity on Linux
Karoly.Bosa@jku.at

• Command taskset is used to set or retrieve the CPU affinity of a running process

given its PID or to launch a new executable/command with a given CPU affinity.

• Install schedutils :

• Debian: apt-get install util-linux

• Red Hat Enterprise: up2date schedutils or rpm -ivh schedutils*

• The CPU affinity is represented as a bitmask e.g.:

• 0x00000001 is processor #0 (1st processor)

46

• 0x00000001 is processor #0 (1st processor)

• 0x00000003 is processors #0 and #1

• 0x00000004 is processors #2 (3rd processor)

• For instance:
• taskset 0x00000001 -p 13545

• Using –c flag instead of bitmask:
• taskset -c 1 -p 13545

• taskset -c 3,4 -p 13545

