
1

Introduction into Multicore
Programming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

2

Topic
Karoly.Bosa@jku.at

• Multicore Software Development: Fact and Fiction

• An Overview The Challenges of Concurrency

• Software Decomposition

• Non-determinism

• Task to Task Communication

• Concurrent Acces to Data or Resources

•Race Condition

•Deadlock

• Synchronization Relationship

• How Many Concurrent Activities Are Enough?

• Debugging and Testing

• Processor Architecture Challenges

• Multicore Programming: Easy or Difficult?

3

Sequential vs. Concurrent Programming
Karoly.Bosa@jku.at

• Sequential programming techniques are important and will always have

their place.

• However, multicore computer configurations are now widely available (with

relatively low cost).

• The trend is that multicore computers will in most cases replace single

processor configurations in business, academia, and government.

• Software architectures that include a mix(!) of sequential programming,

multiprocessing, and multithreading will become common place.

• This opens up some quite different approaches to program decomposition

and software organization.

4

Multicore Software Development: Fact and Fiction I.

Karoly.Bosa@jku.at

• The major challenge is refactoring existing software to achieve

concurrency. NOT (ENTIRELY) TRUE!

• Most (embedded) software system are already quite heavily multithreaded

(simplify the management of the independent functions):

• On a unicore system, threads are logically concurrent.

• On a multicore processor, these threads are naturally and truly

concurrent, usually with no change in the software required (assuming

an SMP) .

• Of course, not all systems make optimal use of all the hardware cores.

• Designers may indeed want to increase concurrency by refactoring the code.

By David N. Kleidermacher, Green Hills Software 2/3/2008

5

Multicore Software Development: Fact and Fiction II.

Karoly.Bosa@jku.at

• When refactoring software, maximize threads while minimizing

processes. NOT TRUE.

• When deciding whether to map a new component to a thread (sharing

memory space with other threads) or a process, consider:

• Processes are memory protected

• The cost (in terms of memory use and context switching time) of a

process may be a bit higher

• Regardless of whether threads or processes are used, an SMP-capable

operating system will automatically schedule the components onto the

available cores.

By David N. Kleidermacher, Green Hills Software 2/3/2008

6

Multicore Software Development: Fact and Fiction III.

Karoly.Bosa@jku.at

• The industry is suffering from a lack of multicore standardization.

(MORE OR LESS)TRUE!

• Multicore software needs the boost of pervasive standards.

• Only few parts of the problem area is covered by standards:

• Multithreading: POSIX is a collection of open standard APIs specified

by the IEEE for operating system services.

• Interprocess Communication (IPC): MPI, POSIX, TIPC, LINX

• Beyond these standards are missing.

By David N. Kleidermacher, Green Hills Software 2/3/2008

7

Multicore Software Development: Fact and Fiction IV.

Karoly.Bosa@jku.at

• Multicore debugging tools are lagging. NOT TRUE!

• Although there are certainly a number of IDEs that have failed to adapt to the

multicore evolution

• But leading IDEs have been focusing multicore support for a long time.

• On-Chip Debugging. Tightly-coupled multicore processors often provide a

single on-chip debug port (e.g. JTAG).

• Multicore Event Analyzers. Many operating system vendors provide an event

analysis tool.

• Parallel (Multicore) Software Tools: Probe, Multi IDE, TotalView, etc.

By David N. Kleidermacher, Green Hills Software 2/3/2008

8

Software Developer’s Points of View
Karoly.Bosa@jku.at

The primary questions are:

• How do you know when your software application needs

multicore programming?

• How do you know where to put the multicore programming in

your piece of software?

• How to organize the interaction among the concurrent

activities?

That’s it. But…

9

Challenges of Concurrency
Karoly.Bosa@jku.at

• Developers are faced with following challenges in the Software Development

Lifecycle of parallel programs:

1. Software decomposition of tasks that need to execute simultaneously

2. Non-deterministic executions of concurrent activities

3. Communication between two or more concurrent tasks

4. Concurrently accessing or updating data

5. Identifying the relationships between concurrent tasks

6. Controlling resource contention when there is a many-to-one ratio

between tasks and resource

7. Determining an optimum or acceptable number of parallel activites

8. Finding test (real/simulated) environment for parallel programs

9. Recreating a software exception or error in debugging.

10

1. Software Decomposition
Karoly.Bosa@jku.at

• Before decomposition you cannot decide about:

• Whether to use concurrent activities?

• How many parallel activities to use?

• Whether use threads or processes, etc.?

• Degrade the complexity of the problem into its fundamental parts. But

what are the fundamental parts of a problem?

• The answer depends on what model you use to represent the problem.

Two major class can be mentioned:

• Procedural models

• Declarative models (e.g.: OO)

• According to the experiences procedural models are not able to scale

over a certain limit (100 or 1000 parallel activities).

• Declarative should be used in the decomposition process(!).

11

2. Non-determinism
Karoly.Bosa@jku.at

• What is concurrency?

• Two or more tasks executing over the same time interval are said to

execute concurrently:

• On two or more CPU this can mean concurrent activities at the

same time.

• On CPU this always mean interleaving of executing activities.

• In both cases the execution order of instructions of different task is not

predefined.

• Most of the challenges are derived from the non-deterministic behavior.

12

Task to Task Communication
Karoly.Bosa@jku.at

• In some cases, the operating system keeps the resources of concurrent task

separate (e.g.: processes).

• Consequently these tasks use separate memory address spaces, too.

• In this case special Inter Process Communication (IPC) mechanisms

provided by the OS are required (e.g. in POSIX):

•Command-line arguments

•Environment variables

•Files with locking facilities

•Pipes

•Shared memory

•Message queues

•Sockets

13

Concurrent Access to Data or Resources
Karoly.Bosa@jku.at

• Synchronization problems imply the competition for some resources by

two or more tasks at the same time

• Resources can be:

• Software resources: files, records within files, fields within records,

shared memory, program variables, pipes, sockets, and functions.

• Hardware resources: interrupts, physical ports, and peripherals such as

printers, modems, displays, storage, and multimedia devices.

• It can result data loss, incorrect program results, system failure, and in some

cases, device damage.

• Some common types of synchronization problems are:

• Race Condition

• Deadlock

14

Race Condition
Karoly.Bosa@jku.at

• If two or more tasks attempt to change(!) a shared piece of data at the

same time

• The final value of the data depends simply on which tasks get there first

(non-determinism)..

• For instance, let a=5 and b=12 are shared variables:

a = a+b;

//Let b equal the previous value of a

b = a-b;

//Let a equal the previous value of b

a = a-b;

a--;

b--;

15

Deadlock
Karoly.Bosa@jku.at

• A waiting-type pitfall: It describes a situation

where two or more concurrent tasks are

blocked forever, waiting for each other.

• A typical example is:

• When two concurrent activities lock

(have exclusive access to) some

distinct resources.

• But each of them need to access to

the resources belonging to the other

task before it can released its own

resources.

• Both of them will wait for the release

of the corresponding resources

(forever).

+hello()

+helloBack()

+hello()

+helloBack()

fred jack

fred locked

by Task 1

jack locked

by Task 2

Task 1 Task 2

16

Identifying Relationships
Karoly.Bosa@jku.at

• Basic Synchronization Relationships:

17

How Many Concurrent Activities Are Enough?
Karoly.Bosa@jku.at

• The old adage “ you can never have enough processors ” is simply

not true.

• Extra overheads which may outweigh the speed improvement and

other advantages gained from parallelization:

• Managing multiple concurrent activities (creation, start, clean up,

etc.)

• Communication or synchronization between concurrent activities.

• The question is whether is there an optimal number of processors

(concurrent tasks) for any given parallel program? The limitation can

caused:

• Either by the managing of software component

• Or by the available hardware resources

18

Debugging and Testing I.
Karoly.Bosa@jku.at

• Sequential programs:

• Tracing of the logic of a program in a step by step manner.

• Starting with the same input (and with the same system state), then the

outcome or the flow of the logic is predictable.

• It is difficult to reproduce the exact context of concurrent tasks because of :

• operating system scheduling policies,

• dynamic workloads on the computer,

• processor time slices,

• process and thread priorities,

• communication latency and

• the random chance involved in parallel contexts.

19

Debugging and Testing II.
Karoly.Bosa@jku.at

• Non-determinism in cross platform development:

• Different treatment of processes and threads in different OS and

hardware.

• For instance, thread priorities in different systems:

• high, medium, low

• User-defined priority levels

• Mission critical priorities

• Real-time priorities

• Normal priorities

• Background priorities, etc.

• Different types of schedulers in different OS

• Different implementations of IPC mechanisms in different OS

• Different implementations of kernel threads versus user threads.

20

Processor Architecture Challenges
Karoly.Bosa@jku.at

• Different architectures translate to difference set of compiler switches

and directives

• In some cases (e.g.: CBE), multiple types of compilers are needed to

generate a single executable program.

• Different linker specific features (e.g.: CBE)

• If you take the advantage of particular architecture can make the

software non-portable(!).

21

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

• According to some commentators that “efficiently and correctly porting

existing code onto platforms with four or more cores is beyond the

capabilities of many engineers.”

• Others simply state that “this is a solved problem and that mature SMP

operating systems and threading libraries already exist and are well

understood.”

• So who is right? The answer is “it depends.”

• The OS can make life easier:

• With full SMP OS support such as Linux.

• In case of refactoring, by supplying multithread support and APIs, particularly

POSIX Threads.

22

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

• A number of different applications fall

into the "easy" category.

• Example I: In communication and
networking

• A single program needs to deal with

a large number of clients.

• A new thread is created for each

incoming connection, and that

thread exists for the duration of

the connection.

• The operating system deals with

assigning these threads to a processor

and scheduling their execution.

23

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

• Example II: Data Parallel approach

• Loop unrolling and auto parallelization:

highly optimized code

into finer grain threads (by the compiler).

• Each iteration of the loop is

independent of the next

• On a four core system, four iterations of

the loop can be executed in parallel with the

expectation of achieving a better

than 3x acceleration.

24

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

• Example III: The main loop now steps

through the data in strides of

PROCESSOR_COUNT(=4). In each

iteration, we create a set of threads and

then wait for them to complete.

• The performance is barely better than

the sequential implementation.

• Serious load balancing issues:

• the program does not treat all of the

elements in the data set equally.

• there is only four threads per

iteration.

• More frequent thread creation than is

necessary.

25

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

• Example III 2nd version:

• the loop becoming distributed

across the threads,

• each thread responsible for

updating the index of data set,

• we now have this shared index

variable, gDataIndex,

• it is necessary to to prevent a
data race.

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

performance is now

approaching the optimal

4x acceleration

26

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

• Thread Safety: A piece of code is

thread-safe if it functions correctly

during simultaneous execution by

multiple threads.

• If we do not apply mutual exclusion

the test of the program can give

correct result (for a while).

• Small changes in the execution time of

one thread or the other could change

the access order to the variable

suddenly triggering a previously

unnoticed data race.

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

This following code fragment

is not thread-safe:

27

Multicore Programming: Easy or Difficult?
Karoly.Bosa@jku.at

Deadlock: It can occur when two separate

thread-safe resources are accessed

together.

By Barry O’Rourke, CriticalBlue -- 3/25/2009 EDN

• Example IV.:The two functions are

executed by different threads.

• If a thread executes both locks before the

second thread executes the locks then

everything will work correctly.

• When both threads reach their respective

function at the same time that problems

occur.

• The best approach is to enforce a

programming standard on a project

(everyone knows what order to lock and

unlock).

