
Introduction into Multicore
Programming

Károly Bósa

(Karoly.Bosa@jku.at)

Research Institute for Symbolic Computation

(RISC)

1

Content of the Course

• Challenges of Multicore Programming

• Multicore Designs from some of the Leading Chip

Manufacturers

• Roles of the Operating Systems

• Process Programming

• Thread Programming

• Communication and Synchronization

• Introduction into some Thread-Safe C++ Component

Libraries

• Multicore Software Design

Karoly.Bosa@jku.at

• No GPU (CUDA) programming on this course

• No “Reduced Instruction Set Computing” (RISC) programming (e.g.: ARM

MIPS, etc.) 2

Karoly.Bosa@jku.at

Organization/Requirements

• Lectures (english)

• Required knowledge: C/C++ Programming Skill, Basic

knowledge about Linux/Unix, UML

• There will be a written final exam.

• (Solving some practical exercises may be also required.)

Slides, exercises and other information are/(will be)
available at:

http://moodle.risc.uni-linz.ac.at/course/view.php?id=66
3

Karoly.Bosa@jku.at

Literatures

Slides, exercises and other information are/(will be)
available at:

http://moodle.risc.uni-linz.ac.at/course/view.php?id=66

The course material will be based on among others the following book:

Cameron Hughes, Tracey Hughes
Professional Multicore Programming: Design and Implementation for
C++ Developers

ISBN: 978-0-470-28962-4

http://www.amazon.de/Professional-Multicore-Programming-Implementation-
Developers/dp/0470289627/ref=sr_1_1?ie=UTF8&s=books-intl-

de&qid=1268746754&sr=8-1-catcorr

4

What Is a Multicore?
Karoly.Bosa@jku.at

• A multicore is an architecture design that places multiple processors on

a single computer chip (Chip Multiprocessors or CMPs).

• Each processor is called a core.

• Way to achieve gains in overall system performance:

•After increasing the clock frequency has started to hit its limits in

terms of cost effectiveness.

• the CMP design has recently become the preferred method of

improving overall system performance.

• But regular desktop software have not been designed to take

advantage of the new multicore architectures.

• Desktop softwars have to be redesigned (to see any real speedup).

5

The Promise of Multicore I.
Karoly.Bosa@jku.at

Dr. Edward Lee,

an electrical and computer engineering professor,

At the University of California-Berkeley:

“Many technologists predict that the end of the Moore’s Law will be answered

with increasingly parallel architectures. If we hope to continue to get

performance gains in computing, programs must be able to exploit this

parallelism.”

6

The Promise of Multicore II.
Karoly.Bosa@jku.at

Bill Gates,

founder of Microsoft, Inc.:

“The fully exploit the power of processors working in parallel… software must

deal with the problem of concurrency. But as any developer who has written

multithreaded code can tell you, this is one of the hardest tasks in

programming.”

7

Gap in the Moore’s Law
Karoly.Bosa@jku.at

• Performance kept pace till

2002 due to technologies like

pipelining, caching and

superscalar designs.

• Increasing the clock rate of

CPUs is approached the limit

of cost effectivenes (The

Power Wall)

• Semiconductor companies are now packing more cores in the processor, instead of

increasing the speed of the processors.

• There are predictions that the processors will support 100's of cores in near future.

• The responsibility of improving performance has now moved from hardware
to software and the big question is whether the software world prepared for it?

8

Multicore and Multiprocessor
Karoly.Bosa@jku.at

• A muticore system is a single-processor CPU that contains two or more

cores.

• Multicore systems share some resources that are often duplicated in

multiprocessor system (e.g.: L2 cache and FSB).

• Multicore systems provide performance that is similar to mutliprocessor

systems, …

• … but often at a significantly lower cost.

9

Multicore and Multitasking
Karoly.Bosa@jku.at

• Multitasking refers to the ability of the OS to quickly switch between

each computing task and

• Give the impression the different applications are executing

simultaneously.

• In single core: only one task runs

at any point in time, but OS apply

task scheduling.

• In multicore: Multitasking OSs can

truly execute multiple tasks

concurrently

10

Multicore and Multithreading
Karoly.Bosa@jku.at

• Multithreading (and multiprocessing too) extends the idea of

multitasking

• You can subdivide operations into individual threads/processes

• Each of them can run in parallel

• The OS divides processing time not only among different applications

but also among each thread/process within an application.

11

Multicore Slow Done I.
Karoly.Bosa@jku.at

• The widespread adoption of multi-core hardware is in many cases actually

slowing down computing.

• How can this be? Don't more cores mean more computing power? Doesn't

more computing power mean software that runs faster? The simple answer is
no.

• The software must be written specifically for the multi-core paradigm.

• The transition from a programming model based on one processor to the one

based on many processors involves a huge leap in complexity and skill.

• With the multi-core paradigm, the application itself must be aware that many

processors are available.

12

Multicore Slow Done II.
Karoly.Bosa@jku.at

• The low cost and wide availability of CMPs bring parallel programming

design into the everyday life of software developers.

• But not every software application requires multiprocessing or

multithreading.

• Parallelism and multiprocessing come at a cost:

• Some software solutions and computer algorithms are better

implemented using sequential programming techniques.

• In some cases, introducing the overhead of parallel programming

techniques into a piece of software can degrade its performance.

• If the amount of effort (for computer) required to solve the problem

sequentially in software is less than

• the effort required to create additional threads and processes or

• the effort required to coordinate communication between

concurrently executing tasks,

then the sequential approach is better (developer must decide).
13

For software developers…
Karoly.Bosa@jku.at

From a logical point of view,

there is no significant difference between programming for multiple

processors in separate packages and programming for multiple

processor core contained on a single chip.

From practical point of view,

there may be performance differences, because the new CMPs are

using advances in bus architectures and in connections between

processors.

Nevertheless, the potential performance gains, the design and

implementation are very similar.

The possible gains are limited by the fraction of the software that can be

parallelized to run on multiple cores simultaneously (Amdahl’s law). 14

No Platform Independent Design
Karoly.Bosa@jku.at

• In order to take full advantage of a multicore platform, you need to

understand what you can do to access the capabilities of a particular

type of CMP.

• You need to understand what elements of a particular type of CMP you

have control over.

• You need a basic understanding of the processor architectures.

15

Multicore Architectures
Karoly.Bosa@jku.at

• CMPs come in multiple flavors:

• two processors (dual core),

• four processors (quad core),

• eight processors (octa - core), etc.

• There are several variations in how cache and memory are

approached.

• The approaches to processor - to - processor communication vary

among different implementations, too.

• The CMP implementations from the major chip manufacturers each

handle the I/O bus and the Front Side Bus (FSB) differently (see later).

16

Three Common Configurations that Support Multitasking

Karoly.Bosa@jku.at

Remark: Some multicore designs support hyperthreading within their

cores. For example, a hyperthreaded dual core processor could

present itself logically as a quad core processor to the operating

system.
17

The Compilation and the CPU Instruction Set
Karoly.Bosa@jku.at

The compiler can have options for

how to produce the object code:

• how registers are used,

• whether to perform loop

unrolling or

• how much L1 or L2 cache is

present, etc.

18

Compiler Switches I.
Karoly.Bosa@jku.at

Title Description Examples of Usage

Fast optimization This option enables the best
possible generic switch
combination to optimize for speed
(e.g choose a CPU specific
instruction set).

-fast

Enables the vectorizer.

(Intel)

Optimization (involves
many other compiler
switches)

This option detects incompatible
processors; error messages are
generated during execution.

-O1

Optimized to favor code
size and code locality and
disables loop unrolling,
software pipelining, and
global code scheduling.

-O2

Turns pipelining ON.

Parallelization

with OpenMP

With this option the compiler
generates multithreaded code
based on OpenMP directives in
the source code added by the
programmer.

#pragma omp parallel

{

#pragma omp
for

// your code

}

19

Compiler Switches II.
Karoly.Bosa@jku.at

Title Description Examples of Usage

Loop unrolling These options enable loop
unrolling. This option makes code
larger, and may or may not make
it run faster.

-funroll-loops
Unroll loops whose

number of iterations

can be determined

at compile time or

upon entry to the

loop.

(-funroll-all-loops)

Floating point Set of switches that allows the
compiler to influence the selection
and use of floating-point
instructions.

-fschedule-insns

Tells the compiler that other
instructions can be issued
until the results of a floating-
point instruction are
required (included in -O2).

-ffloat-store

Tells the compiler that when
generating object code do
not use instructions that
would store a floating-point
variable in registers.

20

Compiler Switches III.
Karoly.Bosa@jku.at

Title Description Examples of Usage

Loop unrolling This option enables loop
unrolling. This applies only to
loops that the compiler
determines should be unrolled. If
n is omitted, lets the compiler
decide whether to perform
unrolling or not.

-unroll<n>

Enables loop unrolling; <n> sets
the maximum time to unroll the
loop.

n = 0

Disables loop unrolling, only
allowable value for 64-bit
architectures. (Intel)

Memory bandwidth This option enables performance
tuning and heuristics that control
memory bandwidth use among
processors. It allows the
compiler to be less aggressive
with optimizations that might
consume more bandwidth, so
that the bandwidth can be well-
shared among multiple
processors for a parallel
program. This option is used for
64-bit architectures only.

-opt-mem-bandwidth<n>

n = 2

Enables compiler optimizations
for parallel code such as
pthreads and MPI code.

n = 1

Enables compiler optimizations
for multithreaded code
generated by the compiler.

21

Compiler Switches IV.
Karoly.Bosa@jku.at

Title Description Examples of Usage

Code generation With this option code is
generated optimized for a
particular architecture or
processor; if there is a
performance benefit, the
compiler generates multiple,
processor specific code paths;
used for 32- and 64- bit
architectures.

-ax<processor>

Generates optimized code for
the specified processor.

-axS

Generates specialized code
paths using SIMD Extensions 4
(SSE4) vectorizing compiler
and media accelerators
instructions.

(Intel)

Auto parallelization This option identifies loop
structures that contain
parallelism and then (if possible)
safely generates the
multithreaded equivalent
executing in parallel.

-parallel

Triggers auto parallelization.

(Intel)

22

Compiler Switches V.
Karoly.Bosa@jku.at

Title Description Examples of Usage

Thread library (auto
parallelization)

This option causes the compiler
to include code from the Thread
Library; The programmer needs
to include API calls in source
code.

-pthread

Uses the pthread library for
multithreading support.

(-ftree-parallelize-loops=n)

• Platform independent general code optimization with GCC:

• -O -O1 Optimizing compilation takes somewhat more time, and a lot more

memory for a large function.

• - O2 Optimize even more. GCC performs nearly all supported optimizations that

do not involve a space-speed tradeoff.

• -O3 Optimize yet more.

• -Ofast Disregard strict standards compliance (from gcc 4.6).

• -O0 Reduce compilation time and make debugging produce the expected

results. This is the default

• For more information see: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

23

Examples: Floating Point Switches
Karoly.Bosa@jku.at

• GNU gcc compiler:

gcc -ffloat-store my_program.cc

• SUN C++ compiler:

CC -fma=used my_program.cc

24

Cross-Platform Compatibility
Karoly.Bosa@jku.at

• The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors

are commonly used multicore configurations. These processors each

support high-speed vector operations and calculations.

• They have support for the Single Instruction Multiple Data (SIMD)

model of parallel computation. This support can be accessed and

influenced by the compiler.

BUT:

• Using many of these types of compiler options cause the compiler to

optimize code for a particular processor(!).

• If cross-platform compatibility is a design goal, then compiler options

have to be used very carefully.

25

Memory I.
Karoly.Bosa@jku.at

• A typical CPU operates only on data

stored in its registers.

• Prior processing data pass through

some kind of memory.

• Most things pass through many levels

of memory.

• Each stage the memory performs at

a different speed(!).

• But memory size is also a factor:

- registers: 32, 64 bits

- L1 and L2 caches: Megabytes

- Main memory: Gigabytes

• The connections between the

memory types also have a major

impact on overall system performance.
26

Registers
Karoly.Bosa@jku.at

Registers are:

• Small but fast memory that are directly accessed by the core,

• Volatile when the program exits any data that it had in its registers

are gone,

• The registers are usually located inside the processor and,

therefore, have almost zero latency(!),

• Most C/C++ compilers have switches that can influence register use.

Remark: In addition to compiler options that can be used to influence

register use, C++ has the asm{ } directive, which allows assembly

language to written within a C++ procedure or function.
27

Cache
Karoly.Bosa@jku.at

• Cache is memory placed between the processor and main system

memory(RAM).

• While cache is not as fast as registers, it is faster than RAM. But its

capacity is greater than the registers, but less than the RAM.

• Cache is used to contain copies of small chunks of memory which may

be needed by the processor(s) in the foreseeable future. This

guessing(!) works with following methods:

• Temporal locality is the tendency to reuse recently accessed

instructions or data.

• Spatial locality is the tendency to access instructions or data that

are physically close to items that were most recently accessed.

• Cache increases the effective memory transfer rates and, therefore,

overall processor performance (only in case of correct guessing).
28

Level 1 and Level 2 Caches
Karoly.Bosa@jku.at

• Level 1 Cache:

• small in size sometimes as small as 16K,

• usually located inside the processor and

• used to capture the most recently used bytes of instruction or data.

• Level 2 Cache:

• bigger and slower than L1 cache (L2 cache measured in megabytes),

• stored on the motherboard (outside the processor), but this is slowly

changing,

Remarks: By compiler switches it can be given some hint as to how much

L1 or L2 cache is available or a hint about the properties of the L1 or L2

cache.
29

The BUS Connection
Karoly.Bosa@jku.at

• The bus is a channel or path between

components in a computer.

• A basic system configuration consists of

two main buses:

• a system bus or the Front

Side Bus (FSB) and

• and an I/O bus.

• If the system has cache, there

is also usually a Back Side Bus

(BSB) connected to the processor and the cache.

• Buses have the potential for throughput bottlenecks(!).

30

Multicore Architectures: UMA
Karoly.Bosa@jku.at

• Uniform Memory Access (UMA)

• Processors share a single memory

• Shared address space is used

UMA configurations are often symmetric multiprocessor (SMP) architectures (all

processors are the same type and they have a uniform latency from memory).

31

Multicore Architectures: NUMA
Karoly.Bosa@jku.at

• Non-Uniform Memory Access (UMA)

• Each processor has access

to its own fast local memory

through the processor’s

on chip memory controller.

• each block of memory

shares a single address

space(logically shared).

• NUMA architecture has a

distributed but shared

memory (DSM) architecture(!).

• The NUMA architecture primarily addresses the scalability bottleneck of the

SMP architecture (where CPUs accessing the same memory bus).

32

Multicore Application Design I.
Karoly.Bosa@jku.at

Some cases the optimization of software to a particular architecture has

higher priority than platform independency feature, e.g.:

• High transaction software servers

• Database

• Financial transaction servers

• Application servers

• Kernels

• Game engines

• Device drivers

• Large-scale matrix and vector computations

• Compilers

• Database engines

• High-definition computer animation

• Scientific visualization modeling, etc
33

Multicore Application Design II.
Karoly.Bosa@jku.at

• Major Focus : taking advantage of CMP architecture.

• Multicore application design and implementation uses parallel

programming techniques.

• The design process specifies the work of some task:

• as either two or more threads,

• two or more processes, or

• some combination of threads and processes.

34

