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Content of the Course

• Challenges of Multicore Programming

• Multicore Designs from some of the Leading Chip 

Manufacturers

• Roles of the Operating Systems

• Process Programming

• Thread Programming

• Communication and Synchronization

• Introduction into some Thread-Safe C++ Component 

Libraries

• Multicore Software Design
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• No GPU (CUDA) programming on this course

• No “Reduced Instruction Set Computing” (RISC) programming (e.g.: ARM 

MIPS, etc.) 2
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Organization/Requirements

• Lectures (english)

• Required knowledge:  C/C++ Programming Skill, Basic 

knowledge about Linux/Unix, UML

• There will be a written final exam.

• (Solving some practical exercises may be also required.)

Slides, exercises and other information are/(will be) 
available at:

http://moodle.risc.uni-linz.ac.at/course/view.php?id=66
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Literatures

Slides, exercises and other information are/(will be) 
available at:

http://moodle.risc.uni-linz.ac.at/course/view.php?id=66

The course material will be based on among others the following book:

Cameron Hughes, Tracey Hughes
Professional Multicore Programming: Design and Implementation for 
C++ Developers

ISBN: 978-0-470-28962-4

http://www.amazon.de/Professional-Multicore-Programming-Implementation-
Developers/dp/0470289627/ref=sr_1_1?ie=UTF8&s=books-intl-

de&qid=1268746754&sr=8-1-catcorr
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What Is a Multicore? 
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• A multicore is an architecture design that places multiple processors on

a single computer chip (Chip Multiprocessors or CMPs).

• Each processor is called a core.

• Way to achieve gains in overall system performance:

•After increasing the clock frequency has started to hit its limits in

terms of cost effectiveness.

• the CMP design has recently become the preferred method of

improving overall system performance.

• But regular desktop software have not been designed to take

advantage of the new multicore architectures.

• Desktop softwars have to be redesigned (to see any real speedup).
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The Promise of Multicore I.
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Dr. Edward Lee, 

an electrical and computer engineering professor, 

At the University of California-Berkeley:

“Many technologists predict that the end of the Moore’s Law will be answered 

with increasingly parallel architectures. If we hope to continue to get 

performance gains in computing, programs must be able to exploit this 

parallelism.”
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The Promise of Multicore II.
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Bill Gates, 

founder of Microsoft, Inc.:

“The fully exploit the power of processors working in parallel… software must 

deal with the problem of concurrency. But as any developer who has written 

multithreaded code can tell you, this is one of the hardest tasks in 

programming.”
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Gap in the Moore’s Law
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• Performance kept pace till 

2002 due to technologies like 

pipelining, caching and 

superscalar designs.

• Increasing the clock rate of 

CPUs is approached the limit 

of cost effectivenes (The 

Power Wall) 

• Semiconductor companies are now packing more cores in the processor, instead of 

increasing the speed of the processors.

• There are predictions that the processors will support 100's of cores in near future.

• The responsibility of improving performance has now moved from hardware 
to software and the big question is whether the software world prepared for it? 
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Multicore and Multiprocessor 
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• A muticore system is a single-processor CPU that contains two or more 

cores.

• Multicore systems share some resources that are often duplicated in 

multiprocessor system (e.g.: L2 cache and FSB).

• Multicore systems provide performance that is similar to mutliprocessor 

systems, …

• … but often at a significantly lower cost. 
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Multicore and Multitasking
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• Multitasking refers to the ability of the OS to quickly switch between 

each computing task and

• Give the impression the different applications are executing 

simultaneously.

• In single core: only one task runs

at any point in time, but OS apply 

task scheduling.

• In multicore: Multitasking OSs can 

truly execute multiple tasks 

concurrently
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Multicore and Multithreading 
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• Multithreading (and multiprocessing too) extends the idea of 

multitasking

• You can subdivide operations into individual threads/processes

• Each of them can run in parallel

• The OS divides processing time not only among different applications 

but also among each thread/process within an application.
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Multicore Slow Done I. 
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• The widespread adoption of multi-core hardware is in many cases actually 

slowing down computing.

• How can this be? Don't more cores mean more computing power? Doesn't 

more computing power mean software that runs faster? The simple answer is 
no.

• The software must  be written specifically for the multi-core paradigm.

• The transition from a programming model based on one processor to the one 

based on many processors involves a huge leap in complexity and skill.

• With the multi-core paradigm, the application itself must be aware that many 

processors are available.
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Multicore Slow Done II. 
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• The low cost and wide availability of CMPs bring parallel programming 

design into the everyday life of software developers. 

• But not every software application requires multiprocessing or 

multithreading.

• Parallelism and multiprocessing come at a cost:

• Some software solutions and computer algorithms are better 

implemented using sequential programming techniques.  

• In some cases, introducing the overhead of parallel programming 

techniques into a piece of software can degrade its performance.

• If the amount of effort (for computer) required to solve the problem 

sequentially in software is less than 

• the effort required to create additional threads and processes or 

• the effort required to coordinate communication between 

concurrently executing tasks, 

then the sequential approach is better (developer must decide).
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For software developers…
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From a logical point of view, 

there is no significant difference between programming for multiple

processors in separate packages and programming for multiple

processor core contained on a single chip.

From practical point of view,

there may be performance differences, because the new CMPs are

using advances in bus architectures and in connections between

processors.

Nevertheless, the potential performance gains, the design and

implementation are very similar.

The possible gains are limited by the fraction of the software that can be

parallelized to run on multiple cores simultaneously (Amdahl’s law). 14



No Platform Independent Design
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• In order to take full advantage of a multicore platform, you need to 

understand what you can do to access the capabilities of a particular 

type of CMP. 

• You need to understand what elements of a particular type of CMP you 

have control over.

• You need a basic understanding of the processor architectures.
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Multicore Architectures
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• CMPs come in multiple flavors: 

• two processors (dual core), 

• four processors (quad core), 

• eight processors (octa - core), etc.

• There are several variations in how cache and memory are 

approached. 

• The approaches to processor - to - processor communication vary 

among different implementations, too. 

• The CMP implementations from the major chip manufacturers each 

handle the I/O bus and the Front Side Bus (FSB) differently (see later).
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Three Common Configurations that Support Multitasking

Karoly.Bosa@jku.at

Remark: Some multicore designs support hyperthreading within their

cores. For example, a hyperthreaded dual core processor could

present itself logically as a quad core processor to the operating

system.
17



The Compilation and the CPU Instruction Set
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The compiler can have options for 

how to produce the object code:

• how registers are used,

• whether to perform loop 

unrolling or

• how much L1 or L2 cache is 

present, etc.
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Compiler Switches I.
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Title Description Examples of Usage

Fast optimization This option enables the best 
possible generic switch 
combination to optimize for speed 
(e.g choose a CPU specific 
instruction set).

-fast

Enables the vectorizer.

(Intel)

Optimization (involves 
many other compiler 
switches)

This option detects incompatible 
processors; error messages are 
generated during execution.

-O1

Optimized to favor code 
size and code locality and 
disables loop unrolling, 
software pipelining, and 
global code scheduling.

-O2

Turns pipelining ON.

Parallelization

with OpenMP

With this option the compiler 
generates multithreaded code 
based on OpenMP directives in 
the source code added by the 
programmer.

#pragma omp parallel

{

#pragma omp 
for

// your code

}
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Compiler Switches II.
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Title Description Examples of Usage

Loop unrolling These options enable loop 
unrolling. This option makes code 
larger, and may or may not make 
it run faster. 

-funroll-loops
Unroll loops whose 

number of iterations 

can be determined 

at compile time or 

upon entry to the 

loop. 

(-funroll-all-loops )

Floating point Set of switches that allows the 
compiler to influence the selection 
and use of floating-point 
instructions.

-fschedule-insns

Tells the compiler that other 
instructions can be issued 
until the results of a floating-
point instruction are 
required (included in  -O2).

-ffloat-store

Tells the compiler that when 
generating object code do 
not use instructions that 
would store a floating-point 
variable in registers.
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Compiler Switches III.
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Title Description Examples of Usage

Loop unrolling This option enables loop 
unrolling. This applies only to 
loops that the compiler 
determines should be unrolled. If 
n is omitted, lets the compiler 
decide whether to perform 
unrolling or not.

-unroll<n>

Enables loop unrolling; <n> sets 
the maximum time to unroll the 
loop.

n = 0

Disables loop unrolling, only 
allowable value for 64-bit 
architectures. (Intel)

Memory bandwidth This option enables performance 
tuning and heuristics that control 
memory bandwidth use among 
processors. It allows the 
compiler to be less aggressive 
with optimizations that might 
consume more bandwidth, so 
that the bandwidth can be well-
shared among multiple 
processors for a parallel 
program. This option is used for 
64-bit architectures only.

-opt-mem-bandwidth<n>

n = 2

Enables compiler optimizations 
for parallel code such as 
pthreads and MPI code.

n = 1

Enables compiler optimizations 
for multithreaded code 
generated by the compiler.
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Compiler Switches IV.
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Title Description Examples of Usage

Code generation With this option code is 
generated optimized for a 
particular architecture or 
processor; if there is a 
performance benefit, the 
compiler generates multiple, 
processor specific code paths; 
used for 32- and 64- bit 
architectures.

-ax<processor>

Generates optimized code for 
the  specified processor.

-axS

Generates specialized code 
paths using SIMD Extensions 4 
(SSE4) vectorizing compiler 
and media accelerators 
instructions.

(Intel)

Auto parallelization This option identifies loop 
structures that contain 
parallelism and then (if possible) 
safely generates the 
multithreaded equivalent 
executing in parallel.

-parallel

Triggers auto parallelization.

(Intel)
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Compiler Switches V.
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Title Description Examples of Usage

Thread library (auto 
parallelization)

This option causes the compiler 
to include code from the Thread 
Library; The programmer needs 
to include API calls in source 
code.

-pthread

Uses the pthread library for 
multithreading support.

(-ftree-parallelize-loops=n)

• Platform independent general code optimization with GCC:

• -O -O1 Optimizing compilation takes somewhat more time, and a lot more 

memory for a large function. 

• - O2 Optimize even more. GCC performs nearly all supported optimizations that 

do not involve a space-speed tradeoff.

• -O3 Optimize yet more. 

• -Ofast Disregard strict standards compliance (from gcc 4.6).

• -O0 Reduce compilation time and make debugging produce the expected 

results. This is the default

• For more information see: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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Examples: Floating Point Switches
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• GNU gcc compiler:

gcc -ffloat-store my_program.cc

• SUN C++ compiler:

CC -fma=used my_program.cc

24



Cross-Platform Compatibility
Karoly.Bosa@jku.at

• The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors

are commonly used multicore configurations. These processors each

support high-speed vector operations and calculations.

• They have support for the Single Instruction Multiple Data (SIMD)

model of parallel computation. This support can be accessed and

influenced by the compiler.

BUT:

• Using many of these types of compiler options cause the compiler to

optimize code for a particular processor(!).

• If cross-platform compatibility is a design goal, then compiler options

have to be used very carefully.
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Memory I.
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• A typical CPU operates only on data

stored in its registers.

• Prior processing data pass through

some kind of memory.

• Most things pass through many levels 

of memory.

• Each stage the memory performs at 

a different speed(!).

• But memory size is also a factor:

- registers: 32, 64 bits

- L1 and L2 caches: Megabytes

- Main memory: Gigabytes

• The connections between the 

memory types also have a major 

impact on overall system performance.
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Registers
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Registers are:

• Small but fast memory that are directly accessed by the core,

• Volatile when the program exits any data that it had in its registers 

are gone,

• The registers are usually located inside the processor and, 

therefore, have almost zero latency(!),

• Most C/C++ compilers have switches that can influence register use.

Remark: In addition to compiler options that can be used to influence

register use, C++ has the asm{ } directive, which allows assembly

language to written within a C++ procedure or function.
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Cache
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• Cache is memory placed between the processor and main system 

memory(RAM).

• While cache is not as fast as registers, it is faster than RAM. But its 

capacity is greater than the registers, but less than the RAM.

• Cache is used to contain copies of small chunks of memory which may 

be needed by the processor(s) in the foreseeable future. This 

guessing(!) works with following methods:

• Temporal locality is the tendency to reuse recently accessed 

instructions or data.

• Spatial locality is the tendency to access instructions or data that 

are physically close to items that were most recently accessed.

• Cache increases the effective memory transfer rates and, therefore, 

overall processor performance (only in case of correct guessing).
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Level 1 and Level 2 Caches
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• Level 1 Cache:

• small in size sometimes as small as 16K,

• usually located inside the processor and

• used to capture the most recently used bytes of instruction or data.

• Level 2 Cache:

• bigger and slower than L1 cache (L2 cache measured in megabytes),

• stored on the motherboard (outside the processor), but this is slowly 

changing,

Remarks: By compiler switches it can be given some hint as to how much 

L1 or L2 cache is available or a hint about the properties of the L1 or L2 

cache. 
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The BUS Connection
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• The bus is a channel or path between 

components in a computer.

• A basic system configuration consists of 

two main buses:

• a system bus or the Front 

Side Bus (FSB) and

• and an I/O bus.

• If the system has cache, there

is also usually a Back Side Bus 

(BSB) connected to the processor and the cache.

• Buses have the potential for throughput bottlenecks(!).
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Multicore Architectures: UMA
Karoly.Bosa@jku.at

• Uniform Memory Access (UMA)

• Processors share a single memory

• Shared address space is used

UMA configurations are often symmetric multiprocessor (SMP) architectures (all 

processors are  the same type and they have a uniform latency from memory).
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Multicore Architectures: NUMA
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• Non-Uniform Memory Access (UMA)

• Each processor has access 

to its own fast local memory 

through the processor’s 

on chip memory controller.

• each block of memory 

shares a single address 

space(logically shared).

• NUMA architecture has a 

distributed but shared 

memory (DSM) architecture(!).

• The NUMA architecture primarily addresses the scalability bottleneck of the 

SMP architecture (where CPUs accessing the same memory bus).
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Multicore Application Design I.
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Some cases the optimization of software to a particular architecture has 

higher priority than platform independency feature, e.g.:

• High transaction software servers

• Database

• Financial transaction servers

• Application servers 

• Kernels 

• Game engines 

• Device drivers 

• Large-scale matrix and vector computations

• Compilers

• Database engines 

• High-definition computer animation

• Scientific visualization modeling, etc
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Multicore Application Design II.
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• Major Focus : taking advantage of CMP architecture.

• Multicore application design and implementation uses parallel 

programming techniques.

• The design process specifies the work of some task: 

• as either two or more threads,

• two or more processes, or

• some combination of threads and processes.
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