The Standard Library

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
http://www.risc.jku.at

&,
W

Wolfgang Schreiner https://www.risc.jku.at

The Standard Library

1/102

Set of headers with declarations.

#include <name>

Headers need not be physical files (do not use <name.h>).

Almost all names are in namespace std.
using namespace std;

Only exceptions are global operators new and delete (header <new>).

Provides lot of basic functionality.

Numerics.
Input/Output.
Containers, iterators, algorithms.
We will look at these in more detail.

For effective programming, it is important to know not only a
programming language but also the associated basic libraries.

Wolfgang Schreiner https://www.risc.jku.at

3/102

17\
N

. General

. lterators

. Adaptors

. Algorithms

Wolfgang Schreiner

C Library Wrappers

. Sequence Containers

. Associative Containers

https:/ /www.risc.jku.at 2/102

178

e

For backward compatibility, the entire C standard library is included.

C++ Header| C Header

<cstdio> <stdio.h>
<cstdlib> <stdlib.h>
<cstring> <string.h>
<cmath> <math.h>

Use of C++ header (places name in namespace std)

#include <cstdio>

int main() { std::printf("Hello, world"); }
Use of C header (places name in global namespace)

#include <stdio.h>
int main() { printf("Hello, world"); }

Wolfgang Schreiner

The C++ library provides better alternatives for writing new applications.

https://www.risc.jku.at 4/102

Traits and Policies .E {-

The standard library makes heavy use of traits and policies.
Trait: a class that provides information about a type.
By type definitions and/or static member data in the trait.
Policy: a trait that also defines an operational interface for the type.
By static member functions in the policy.

Often implemented as specializations of dummy templates.
template <type T> class Trait { }; // dummy trait template
template<> class Trait<int> { ... }; // trait for type "int"

Thus the trait for a type can be deduced from the name of a type.

Mainly used as template arguments.

template<class C, class T = Trait<C> >

class Lib { ... C . T::member ... };

Template thus receives required information about type parameter.
Since trait holds information, atomic type can be template argument.

Many standard types are instantiations of templates with traits/policies.

Wolfgang Schreiner https://www.risc.jku.at 5/102
@S
Example: Strings that Ignore Cases .E {'
[]

template<typename T> struct ci_char_traits { };
template<> struct ci_char_traits<char> {
typedef char char_type; typedef int int_type;
typedef std::streamoff off_type; typedef std::streampos pos_type;
typedef std::mbstate_t state_type;
static void assign(char_type& dst, const char_type src) { dst = src; }
static char_type* assign(char* dst, std::size_t n, char c)
{ return static_cast<char_type*>(std::memset(dst, n, c)); }
static bool eq(const char_type& cl, const char_type& c2)
{ return lower(cl) == lower(c2); }
static bool lt(const char_type& cl, const char_type& c2)
{ return lower(cl) < lower(c2); }
static int compare(const char_typex sl, const char_type* s2, std::size_t n) {
for (size_t i = 0; i < nj; i++) {
char_type lcl = lower(s1[i]); char_type 1c2 = lower(s2[i]);
if (lcl < 1c2) return -1; if (lcl > 1c2) return +1;
}
return 0;
}
static int_type lower(char_type c) { return std::tolower(to_int_type(c)); }

};

Wolfgang Schreiner https://www.risc.jku.at 7/102

| aY
Example: Class string .ﬁ <

C++ strings are actually parameterized over the character type.

// header <string>
template<typename charT> struct char_traits;

template<> struct char_traits<char> { ...}
template<class charT, class traits = char_traits<charT>, ... >
class basic_string { ... }

typedef basic_string<char> string;

Wide character type: wchar_t
Narrow character type char is only one byte large.
wchar_t is typically 32 bit large and may hold any Unicode character.

wchar_t pi = ’\u03c0’; // greek character "pi"

Wide strings: another string type provided by the library.
template<> struct char_traits<wchar t> {...}
typedef basic_string<wchar_t> wstring;

The whole library (also I/O) works with any character type.

Wolfgang Schreiner https:/ /www.risc.jku.at 6/102

Example (Contd) N

typedef std::basic_string<char, ci_char_traits<char> > ci_string;

int main()

{
ci_string s1 = "Hello, World";
ci_string s2 = "hello, world";
std::cout << (sl == s2); // "true";
¥

Ray Lischner “C+4++ in a Nutshell”.

Wolfgang Schreiner https://www.risc.jku.at 8/102

@ Y

Allocators K * Example K *
N N’
template<typename T> class myallocator {
The standard library is also generic with respect to memory management. public:

Allocator: a policy for managing dynamic memory.

typedef std::size_t size_type; typedef std::ptrdiff_t difference_type;
typedef T* pointer; typedef const T* const_pointer;

Use of new and delete is not hard-wired in the standard library. typedef T& reference; typedef const T% const_reference;

The library provides a standard allocator
// header <memory>
template <class T> class allocator { ...}
Standard library classes use this allocator by default
// header <string>

typedef T value_type;

template <class U> struct rebind { typedef myallocator<U> other; };
myallocator() throw() {}

myallocator(const myallocator&) throw() {r

template <class U> myallocator(const myallocator<U>&) throw() {}
“myallocator() throw() {}

pointer address(reference x) const {return &x;}

template<class charT, class traits = char_traits<charT>, const_pointer address(const_reference x) const {return &x;}

class Alloc = allocator<charT> >
class basic_string { ...}

Other allocation schemes are possible

template<> class allocator<int> {...} // globally used

pointer allocate(size_type n, void* hint = 0)

{ return static_cast<T*>(::operator new (n * sizeof(T))); }
void deallocate(pointer p, size_type n)

{ ::operator delete(static_cast<void*>(p)); }

size_type max_size() const throw()

class MyCharAllocator {...} // selectively used { return std::numeric_limits<size_type>::max() / sizeof(T); }

typedef basic_string<char, char_traits<char>,
MyCharAllocator> mystring;

Wolfgang Schreiner https://www.risc.jku.at

Example (Cntd)

void construct(pointer p, const T& val) { new(static_cast<void*>(p)) T(val); }
void destroy(pointer p) { p—>"TO; }
};

9/102 Wolfgang Schreiner https:/ /www.risc.jku.at 10/102

N

N Standard Template Library (STL) v

template<> class myallocator<void> {
public:

typedef void* pointer; typedef const void* const_pointer;

typedef void value_type;

template <class U> struct rebind { typedef myallocator<U> other; };
};

template<typename T>

bool operator==(const myallocator<T>&, const myallocator<T>&) { return true; }

template<typename T>

bool operator!=(const myallocator<T>&, const myallocator<T>&) { return false; }

int main() {
std::1list<int, myallocator<int> > data;
data.push_back(10) ;
data.push_back(20);
return data.size();

}

Ray Lischner “C++ in a Nutshell”.

Wolfgang Schreiner https://www.risc.jku.at

The core of SGI's STL was integrated into the C++ standard.
Containers: template classes that hold arbitrary kinds of items.
Vectors, double ended queues, lists, (multi)sets, (multi)maps,
bitsets.

Sequence containers: preserve order in which items are added.
Associative containers: fast search by sorting items according to keys.
Adaptors: template classes that provide abstract container interfaces.
Stacks, queues, priority queues.
Iterators: (abstractions of) container pointers/indices.

Identify (ranges of) elements in container.
Same code may be used for processing different kinds of containers.

Algorithms: template functions that implement common algorithms.
Processing, sorting, searching, merging, ...
Based on iterators, applicable to all kinds of containers.

The workhorse of generic programming in C++-.
11/102 Wolfgang Schreiner https://www.risc.jku.at 12/102

ZAS A

Sequence Containers (cplusplus.com) % Associative Containers (cplusplus.com) '& {'

Sequence containers Associative containers.
ieaders el T o e coe Headers <ser> o> <nordered_set> <mordered map>
[Members (array B | Ve ton OEgUE| forwrard et] | NG [Members set multiset map | multimap_| unordered_set [unordered_multiset| unordered_map [unordered_multimap|
e T T T S Comsrucor et Jmutictfmop - [mutumap..Jonodered-set_[snordered_mutse.unarcered. map - unacered mutimap
eperazor= _[implicit_|operator= _[operator= _|operator=__[operator= destructor = multiset}map pmultimap. Lset ares Lmp. Loy
= lessignment___|operator= _|operator= _|operator=_|operator=__operator= [operator= loperator= loperator=
fpegee begin [begin lbegin e begin P29 fbegen begin jbegin joegin begin pegin pegin lbegin lbegin
lterators~ foma erd— [end = end = cerators. |2 lend lend fend end lend [end lend lend
=m begin _[rbegin rocgin rocgin cbegin begin begin [roegin roegin
= endrenc frend rend cens rend rend frena rend
egin [cbegin [cbegin lcbegin i:f;’;(begin [©P29" cbegin [cbegin cbegin lcbegin [cbegin |cbegin [cbegin [cbegin |cbegin
const =1 = cend = const [cend [cena Jcena lcend cena lcena [cena Jcena Jcena
SN e 3ok = terators [crbegin lcbegin_|crbegin__Jerbegin___[crbegin
[crendJerend crend crend zena [crend lerend lerend crend
sze Jsze size size oize [size Jsize size size Jsize size jsize jsize
[max_size [maxsze |maxsze |maxsze |maxsze [max_size |max_size |max_sze |max_size |max_size [max_size [max_size [max_size
empty _Jempry _fempry empty lempty c2paciy lempty lempty lempty empty lempty fempty lempty lempty
capacity resize Fresize resize Fresize reserve — — Feserve
Shrink_to_ft[shrink_to_fit — o o
jcopacty access loperator] loperatorl]
P N — s lemplace__emplace __|emplace_|emplace__|emplace lemplace lemplace lemplace
ok Toack ok ok [emplace nine |emplace_t X X X hint___|emplace_int lemplace_hint __|emplace_hint
i P——— e moditers 2252 nsert fnsert nsert insert insert insert nsert nsert
e at ot ot Jezase ferase lerase ferose erase lerase ferase lerase lerase
fession sssgn_Jessan assign assign c1car cear |cear ldear ear Jcear cear Jgear Jgear
femptece empiace Jemplace |emplace_after |emplace [swop Jswap. [swap swap [swop [swop [swop [swap
msert fsert insert_after _nserc [count Jcount lcount count Jcount fcount Jcount Jcount
=3 frase orose_ofter__Jerase [ind lind find find [in [ind [ind [ind
jmplace_backlemplsce_back emplace_back [eaual_range [equal_range |equal_range |equal_range |equal_range lequal_range leaual_range leaual_range
- pusn o pon oot pusn o fowebound Jover_bound Jower-bound jower_bound
lpush_front_|push_front__[push_front ge<_el1ocazor _[get_alocator [get_allocator [get_allocator |get_alocator |get_allocator __|get_allocator loet_allocator __|get_allocator
lpop_front_[pop_front __|pop_front lkey_comp _[key_comp _key_comp _key comp
dear dear dear dear lobservers [value_comp [value_comp value_comp_|value_comp
— swop__Jowap swap swap swap [key_eq key_eq lkey_eq lkey_eq
Splce_after _[sphce [hash_function _|nash_function [hash_function _|nash_function
remove remove lbucket lbucket [bucket lbucket
romove f emove i bucket_count __|bucket_count ucket_count ucket_count
ist operatins fu= iniyte = puckets bucket_sze [bucket_size [bucket_size [bucket_size
= —— ax_bucket_count|max_bucket_count _|max_bucket_count|max_bucket_count
= e~ o rehash rehosh [rehash. [rehash
2 lget_allocator [get_allocator [get_allocator _[get_alocator polcy Joodfactory Joodfactory Josdfactory Josdfactor
Posere foeea gotaJoata [max_Joad_tfactor_|max load_factor _|max load_factor _|max_load_factor

Wolfgang Schreiner https://www.risc.jku.at 13/102 Wolfgang Schreiner https:/ /www.risc.jku.at 14/102

Example: A Vector Program % Example: A List Program v

#include <iostream> #include <iostream>
#include <vector> #include <list>

#include <algorithm> #include <algorithm>
using namespace std; using namespace std;

void print(int i) { cout << i << endl; } void print(int i) { cout << i << endl; }

int main () int main ()
{ {
int values[] = {75, 23, 65, 42, 14}; int values[] = {75, 23, 65, 42, 14};

vector<int> container(values, values+5); // pointers as iterators list<int> container(values, values+5); // pointers as iterators
// iterate over container // iterate over container
for (vector<int>::iterator it = container.begin(); it != container.end(); it++) for (list<int>::iterator it = container.begin(); it != container.end(); it++)

cout << *it << endl; cout << *it << " "

// use algorithm for iteration // use algorithm for iteration
for_each(container.begin(), container.end(), print); for_each(container.begin(), container.end(), print);
return O; return O;

} }

Wolfgang Schreiner https://www.risc.jku.at 15/102 Wolfgang Schreiner https://www.risc.jku.at 16/102

. age ° .
Simplified Syntax %
(]
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;
void print(int i) { cout << i << endl; }
int main ()
{
int values[] = {75, 23, 65, 42, 14};
list<int> container(values, values+5); // pointers as iterators
// C++11: range-based for loops (expanded to for loops with iterators)
for (int value : container)
cout << value << " ";
// use algorithm for iteration
for_each(container.begin(), container.end(), print);
return O;
}
Wolfgang Schreiner https://www.risc.jku.at
()

Sequence Containers

17/102

Strict linear sequences of elements
<vector>: class template vector
Dynamic arrays.
<deque>: class template deque (“deck”)
Double-ended queues.
<1list>: class template 1ist
Doubly-linked lists.
Common operations
Basic: constructor, destructor, operator=.
hemtom:begin,end,rbegin,rend
Capacity: size, max_size, empty, resize
Sequential access: front, back.
Random access (not 1ist) operator[], at.
Modifiers: assign, insert, erase, swap, clear.
Modify end: push_back, pop_back.
Modify begin (not vector): push_front, pop_front.

Similar interfaces, operations vary in performance.

Wolfgang Schreiner https://www.risc.jku.at

19/102

2N,
W

1. General

2. Sequence Containers

3. lterators

4. Adaptors

5. Associative Containers

6. Algorithms

Wolfgang Schreiner https:/ /www.risc jku.at 18/102

7\
5 .

Class Template vector E.{

cplusplus.com: “C++ Reference”.

template < class T, class Allocator = allocator<T> > class vector;

Vector containers are implemented as dynamic arrays; Just as regular arrays,
vector containers have their elements stored in contiguous storage locations,
which means that their elements can be accessed not only using iterators but
also using offsets on regular pointers to elements.

But unlike regular arrays, storage in vectors is handled automatically,
allowing it to be expanded and contracted as needed.

Vectors are good at:

* Accessing individual elements by their position index (constant time).
* Iterating over the elements in any order (linear time).
* Add and remove elements from its end (constant amortized time).

Compared to arrays, they provide almost the same performance for these tasks,
plus they have the ability to be easily resized. Although, they usually
consume more memory than arrays when their capacity is handled automatically
(this is in order to accomodate for extra storage space for future growth).

Wolfgang Schreiner https://www.risc.jku.at 20/102

Example

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <vector>
using namespace std;

int main () {

}

9

Wolfgang Schreiner

vector<int> myvector (10);
vector<int>::size_type sz = myvector.size();
for (unsigned int i=0; i<sz; i++) myvector[i]l=i;

for (unsigned int i=0; i<sz/2; i++) { // reverse vector using operator[]

int temp = myvector[sz-1-il;
myvector [sz-1-i]=myvector[i];
myvector [i]=temp;

}

for (unsigned int i=0; i<sz; i++) cout << " " << myvector[il;
return O;

876543210

https://www.risc.jku.at

Example

21/102

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <vector>
using namespace std;
int main ()

{

}

1

Wolfgang Schreiner

vector<int> myvector; // vector with 10 elements
for (unsigned int i=1;i<10;i++) myvector.push_back(i);

// shrink to size 5
// extend to size 8, fill with 100
// extend to size 12, fill with O

myvector.resize(5) ;
myvector.resize(8,100);
myvector.resize(12);
for (unsigned int i=0;i<myvector.size();i++)

cout << " " << myvector[il;

2 345 100 100 100 0 0 0 O

https://www.risc.jku.at

23/102

Example

17\
N4

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <vector>
using namespace std;

int main () {
vector<int> myvector;

myvector.push_back(10) ;
while (myvector.back() != 0)
{
myvector.push_back (myvector.back() -1);

}

for (unsigned i=0; i<myvector.size() ; i++)
cout << " " << myvector[il;
return O;

}

109876543210

Wolfgang Schreiner https:/ /www.risc.jku.at

Class vector<bool>

22/102

™,
W

The vector class template has a special template specialization for the bool
type. This specialization is provided to optimize for space allocation: In
this template specialization, each element occupies only one bit (which is

eight times less than the smallest type in C++:

char) .

The references to elements of a bool vector returned by the vector members are
not references to bool objects, but a special member type which is a
reference to a single bit, defined inside the vector<bool> class

specialization as:

class vector<bool>::reference {
friend class vector;
reference();
public:
“reference();
operator bool () const;
reference& operator= (const bool x);
reference& operator= (const reference& x);
void flip(Q);
¥

For a similar container class to contain bits,
Wolfgang Schreiner

https://www.risc.jku.at

// no public constructor

// convert to bool
// assign from bool
// assign from bit
// flip bit value.

but with a fixed size, see bitset.
24/102

Class bitset .ﬁ {'
°
#include <iostream>
#include <string>
#include <bitset>
using namespace std;
int main) {
bitset<4> first (string("1001"));
bitset<4> second (string("0011"));
cout << (first~=second) << endl; // 1010 (XOR,assign)
cout << (first&=second) << endl; // 0010 (AND,assign)
cout << (first|=second) << endl; // 0011 (OR,assign)
cout << (“second) << endl; // 1100 (NOT)
cout << (second<<1) << endl; // 0110 (SHL)
cout << (second>>1) << endl; // 0001 (SHR)
cout << (first==second) << endl; // false (0110==0011)
cout << (first!=second) << endl; // true (0110!=0011)
cout << (first&second) << endl; // 0010
cout << (first|second) << endl; // 0111
cout << (first“second) << endl; // 0101
return O;
}
Wolfgang Schreiner https://www.risc.jku.at 25/102

Example

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <deque>
using namespace std;

int main ()

{

}

deque<int> mydeque (2,100); // two ints with a value of 100
mydeque.push_front (200);

mydeque.push_front (300);

for (unsigned i=0; i<mydeque.size(); ++i)
cout << " " << mydequel[il];
return O;

300 200 100 100

Wolfgang Schreiner

https://www.risc.jku.at

27/102

.M.EO
W

Class Template deque

cplusplus.com: “C++ Reference”.

template < class T, class Allocator = allocator<T> > class deque;

Deques may be implemented by specific libraries in different ways, but in all
cases they allow for the individual elements to be accessed through random
access iterators, with storage always handled automatically (expanding and
contracting as needed).

Deque sequences have the following properties:

* Individual elements can be accessed by their position index.

* Iteration over the elements can be performed in any order.

* Elements can be efficiently added and removed from any of its ends
(either the beginning or the end of the sequence).

Therefore they provide a similar functionality as the one provided by vectors,
but with efficient insertion and deletion of elements also at the beginning
of the sequence and not only at its end. On the drawback side, unlike

vectors, deques are not guaranteed to have all its elements in contiguous
storage locations, eliminating thus the possibility of safe access through
pointer arithmetics.

Wolfgang Schreiner https:/ /www.risc.jku.at 26/102
A
Example * *
N4

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <deque>
using namespace std;

int main () {
deque<int> mydeque;
mydeque.push_back (100);
mydeque.push_back (200);
mydeque.push_back (300);

while (!'mydeque.empty()) {
cout << " " << mydeque.front();
mydeque.pop_front();

cout << "\nFinal size of mydeque is " << int(mydeque.size()) << endl;
return O;

}

100 200 300
Final size of mydeque is O

Wolfgang Schreiner https://www.risc.jku.at 28/102

Class Template 1ist

cplusplus.com: “C++ Reference”.

template < class T, class Allocator = allocator<T> > class list;

List containers are implemented as doubly-linked lists; doubly linked lists
can store each of the elements they contain in different and unrelated
storage locations. The ordering is kept by the association to each element of
a link to the element preceding it and a link to the element following it.

This provides the following advantages to list containers:

* Efficient insertion/removal of elements in the container (constant time).
* Efficient moving elements within the container (constant time).
* Iterating over the elements in forward or reverse order (linear time).

Compared to other base standard sequence containers (vectors and deques),
lists perform generally better in inserting, extracting and moving elements
in any position within the container, and therefore also in algorithms that
make intensive use of these, like sorting algorithms.

The main drawback of lists compared to these other sequence containers is that
they lack direct access to the elements by their position ...

Wolfgang Schreiner https://www.risc.jku.at 29/102

1. General

2. Sequence Containers
3. lterators

4. Adaptors

5. Associative Containers

6. Algorithms

Wolfgang Schreiner https://www.risc.jku.at 31/102

17\
N

Example

cplusplus.com: “C++ Reference”.

// reversing vector
#include <iostream>
#include <list>

using namespace std;

int main ()
{
list<int> mylist;
for (int i=1; i<10; i++) mylist.push_back(i);
mylist.reverse(); // additional member function of list
for (list<int>::iterator it=mylist.begin(); it!=mylist.end(); ++it)
cout << " " << ¥it;
return O;

}

987654321

Wolfgang Schreiner https:/ /www.risc.jku.at 30/102

.M.%.
Iterators 4

cplusplus.com: “C++ Reference”.

Header <iterator>

In C++, an iterator is any object that, pointing to some element in a range of
elements (such as an array or a container), has the ability to iterate
through the elements of that range using a set of operators (at least, the
increment (++) and dereference (*) operators).

The most obvious form of iterator is a pointer: A pointer can point to
elements in an array, and can iterate through them using the increment
operator (++). But other forms of iterators exist. For example, each
container type (such as a vector) has a specific iterator type designed to
iterate through its elements in an efficient way.

Notice that while a pointer is a form of iterator, not all iterators have the
same functionality a pointer has; to distinguish between the requirements an
iterator shall have for a specific algorithm, five iterator categories exist:

RandomAccess -> Bidirectional -> Forward -> Input
-> Output

Wolfgang Schreiner https://www.risc.jku.at 32/102

Iterator Categories

cplusplus.com: “C++ Reference”.

* Input and output iterators are the most limited types of iterators,
specialized in performing only sequential input or ouput operations.

* Forward iterators have all the functionality of input and output iterators,
although they are limited to one direction in which to iterate through a
range.

* Bidirectional iterators can be iterated through in both directioms. All
standard containers support at least bidirectional iterators types.

* Random access iterators implement all the functionalities of bidirectional
iterators, plus, they have the ability to access ranges non-sequentially:
offsets can be directly applied to these iterators without iterating through
all the elements in between. This provides these iterators with the same
functionality as standard pointers (pointers are iterators of this category).

Wolfgang Schreiner https://www.risc.jku.at 33/102
S
Class <iterator> . °
W

cplusplus.com: “C++ Reference”.

This is a base class template that can be used to derive iterator classes from
it. It is not an iterator class and does not provide any of the functionality
an iterator is expected to have.

This base class only provides some member types, which in fact are not
required to be present in any iterator type (iterator types have no specific
member requirements), but they might be useful, since they define the members
needed for the default iterator_traits class template to generate the
appropriate iterator_traits class automatically.

template <class Category, class T, class Distance = ptrdiff_t,
class Pointer = Tx, class Reference = T&>
struct iterator {
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
};
WngEr?ég%Yeiner

_ https://www.risc.jku.at 35/102

.M.EO
e

Iterator Operations

category characteristic valid expressions|
(Can be copied and copy-constructed ; 2(:: ;
all categories ++a
Can be incremented a++
*a++
IAccepts equality/inequality comparisons : T: ﬁ
Input a
Can be dereferenced as an rvalue a->m
Forward - - T2 ot
Bidirectional (Output/Can be dereferenced to be the left side of an assignment operation| *att = t
Can be default-constructed ; (E;;
--a
Can be decremented a--
Random) *a--
Access 2 + n
Supports arithmetic operators + and - : T :
a - b
Supports inequality comparisons (< and >) between iterators : : :;
a +=n
Supports compound assignment operations +=, -=, <= and >= : ;: ;
a >=b
Supports offset dereference operator ([]) a[n]
Wolfgang Schreiner https:/ /www.risc.jku.at 34/102
S
Example '& {'
[
cplusplus.com: “C++ Reference”.
#include <iostream>
#include <iterator>
using namespace std;
class myiterator : public iterator<input_iterator_tag, int> {
int* p;
public:
myiterator(int* x) :p(x) {}
myiterator(const myiterator& mit) : p(mit.p) {}
myiterator& operator++() {++p;return *this;}
myiterator& operator++(int) {p++;return *this;}
bool operator==(const myiterator& rhs) {return p==rhs.p;}
bool operator!=(const myiterator& rhs) {return p!=rhs.p;}
int& operator*() {return *p;}
};
int main) {
int numbers[]={10,20,30,40,50};
myiterator beginning(numbers); myiterator end(numbers+5);
for (myiterator it=beginning; it!=end; it++) cout << *it << " ";
Wolfgang Schreiner https://www.risc.jku.at 36/102

A o7\

. . ° D °
Containers and lterators 4 Example 14
. .
cplusplus.com: “C++ Reference”. cplusplus.com: “C++ Reference”.
{vector,deque,list}::{begin,end} public member function #include <iostream>
#include <vector>
iterator begin (); using namespace std;
const_iterator begin () const;
int main ()
Returns an iterator referring to the first element in the container. {

vector<int> myvector;
iterator end (); for (int i=1; i<=5; i++) myvector.push_back(i);
const_iterator end () const;
for (vector<int>::iterator it=myvector.begin() ; it < myvector.end(); it++)

Returns an iterator referring to the past-the-end element in the cout << " " << *it;
vector container. return O;
}
Both iterator and const_iterator are member types.
12345
* In the vector and dequeue class template, these are random access iterators.
* In the list class template, these are bidirectional iterators.
Wolfgang Schreiner https://www.risc.jku.at 37/102 Wolfgang Schreiner https:/ /www.risc.jku.at 38/102
O, O,

07\
Automatic Type Deduction (C++11) .ﬁ {' Range-based for Loops (C++11) '& {'

(] °

#include <iostream> #include <iostream>
#include <vector> #include <vector>
using namespace std; using namespace std;
int main () int main ()
{ {

vector<int> myvector; vector<int> myvector;

for (int i=1; i<=5; i++) myvector.push_back(i); for (int i=1; i<=5; i++) myvector.push_back(i);

for (auto it=myvector.begin() ; it < myvector.end(); it++) for (int value : myvector)

cout << " " << *it; cout << " " << value;

return 0; return O;
} T
12345 12345
No explicit reference to iterator types. No explicit reference to iterators.

Wolfgang Schreiner https://www.risc.jku.at 39/102 Wolfgang Schreiner https://www.risc.jku.at 40/102

Advancing lterators N (.

cplusplus.com: “C++ Reference”.
template function header <iterator>

template <class Inputlterator, class Distance>
void advance (InputIterator& i, Distance n);

Advances the iterator i by n elements.

If i is a Random Access Iterator, the function uses once operator+ or
operator-, otherwise, the function uses repeatedly the increase or decrease
operator (operator++ or operator--) until n elements have been advanced.

Complexity

* Constant for random access iterators.
* Linear on n for other categories of iterators.

Wolfgang Schreiner https://www.risc.jku.at 41/102
7Y
Container Construction with lterators .ﬁ {'
[]

cplusplus.com: “C++ Reference”.

template <class InputIterator> vector

(InputIterator first, InputIterator last, const Allocator& = Allocator());
template <class InputIterator> deque

(InputlIterator first, InputIterator last, const Allocator& = Allocator());
template < class InputlIterator > list

(InputlIterator first, InputIterator last, const Allocator& = Allocator());

Iteration constructor: Iterates between first and last, setting a copy of each
of the sequence of elements as the content of the container.

With input iterators, we can initialize a container by a range of elements
from another container.

Wolfgang Schreiner

https://www.risc.jku.at 43/102

7\
Example W

cplusplus.com: “C++ Reference”.

#include <iostream>

#include <iterator>

#include <list>

using namespace std;

int main () {
list<int> mylist;
for (int i=0; i<10; i++) mylist.push_back (i*10);
list<int>::iterator it = mylist.begin();
advance (it,5);
cout << "The sixth element in mylist is: " << *it << endl;
return O;

}

The sixth element in mylist is: 50

Wolfgang Schreiner https:/ /www.risc.jku.at 42/102

Example N4

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <list>
using namespace std;

int main () {
list<int> first; // empty list of ints
list<int> second (4,100); // four ints with value 100
list<int> third (second.begin(),second.end()); // iterating through second
list<int> fourth (third); // a copy of third

// the iterator constructor can also be used to construct from arrays:
int myints[] = {16,2,77,29};
list<int> fifth (myints, myints + sizeof (myints) / sizeof(int));

for (list<int>::iterator it = fifth.begin(); it != fifth.end(); it++)
cout << *xit << " ";
T
16 2 77 29

Wolfgang Schreiner https://www.risc.jku.at 44/102

Reverse lterators N4

cplusplus.com: “C++ Reference”.

template <class Iterator> class reverse_iterator; header <iterator>
This class reverses the direction a bidirectional or random access iterator
iterates through a range.

A copy of the original iterator (the base iterator) is kept internally and
used to reflect all operations performed on the reverse_iterator: whenever
the reverse_iterator is incremented, its base iterator is decreased, and vice
versa. The base iterator can be obtained at any moment by calling member base.

Notice however that when an iterator is reversed, the reversed version does
not point to the same element in the range, but to the one preceding it. This
is so, in order to arrange for the past-the-end element of a range: An
iterator pointing to a past-the-end element in a range, when reversed, is
changed to point to the last element (not past it) of the range (this would
be the first element of the range if reversed). And if an iterator to the
first element in a range is reversed, the reversed iterator points to the
element before the first element (this would be the past-the-end element of
the range if reversed).

Wolfgang Schreiner https://www.risc.jku.at 45/102
()
Containers and Reverse lterators .ﬁ {'
[]

cplusplus.com: “C++ Reference”.
{vector,deque,list}::{rbegin,rend} public member function

reverse_iterator rbegin ();
const_reverse_iterator rbegin () const;

Returns a reverse iterator referring to the last element in the container.

reverse_iterator rend ();
const_reverse_iterator rend () const;

Both reverse_iterator and const_reverse_iterator are member types defined as
reverse_iterator<iterator> and reverse_iterator<const_iterator> respectively.

* In the vector and dequeue class template, these are
reverse random access iterators.

* In the list class template, these are
reverse bidirectional iterators.

Wolfgang Schreiner

https://www.risc.jku.at 47/102

7 N\
Example W

cplusplus.com: “C++ Reference”.
#include <iostream>

#include <iterator>

#include <vector>

using namespace std;

int main () {
vector<int> myvector;
for (int i=0; i<10; i++) myvector.push_back(i);
typedef vector<int>::iterator iter_int;
// 701234567897

iter_int begin (myvector.begin()); /!

iter_int end (myvector.end()); // -
reverse_iterator<iter_int> rev_end (begin); // "
reverse_iterator<iter_int> rev_iterator (end); // -

for (; rev_iterator < rev_end ; ++rev_iterator) cout << *rev_iterator << " ";

return O;

}

9876543210

Wolfgang Schreiner https:/ /www.risc.jku.at 46/102
A
Example « *
N4

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <vector>
using namespace std;

int main ()
{
vector<int> myvector;
for (int i=1; i<=5; i++) myvector.push_back(i);

vector<int>::reverse_iterator rit;

for (rit=myvector.rbegin() ; rit < myvector.rend(); ++rit)
cout << " " << *rit;

return 0;

54321

Wolfgang Schreiner https://www.risc.jku.at 48/102

ZAS 7\

. H H) J [} J
Container Operations with Iterators v Example 4
° °
{vector,deque,list}: :* public member functions cplusplus.com: “C++ Reference”.
. . #include <iostream>
template <class InputIterator> void assign (InputIterator f, InputIterator 1); #include <list>
void assign (size_type n, const T& u); #include <vector>
. . . A X using namespace std;
Assigns new content to the container, dropping all the elements contained in
the container object and replacing them by those specified by the parameters. int main O {
. . G % ys list<int> mylist;
1t§raFor 1nse?t iterator P, const X); for (int i=1; i<=5; i++) mylist.push_back(i); // 12345
void insert (iterator p, size_type n, const T& x); list<int>::iterator it = mylist.begin();
template <class Inputlterator> it // it points now to number 2 ~
void insert (iterator p, Inputlterator f, Inputlterator 1); myli;t insert (it,10): // 1102345
. // "it" still points to number 2 -
The container is extended by inserting new elements before position p. This mylist.insert (it,2,20); // 11020202345
effectively increases the container size by the amount of elements inserted. it ' 7/ it’p;int; now to the second 20 -
X (i . ys vector<int> myvector (2,30);
?terator erase %terator P?51t1°§ § mylist.insert (it,myvector.begin(),myvector.end());
iterator erase (iterator first, iterator last); // 110 20 30 30 20 234 5
// -
Removes from the list container either a single element (position) or a for (it=mylist.begin(); it'!=mylist.end(); it++) cout << " " << xit;
range of elements ([first,last)). This effectively reduces the list size by return 0: ’ ’ ’ ’
the number of elements removed, calling each element’s destructor before. } ’
Wolfgang Schreiner https://www.risc.jku.at 49/102 Wolfgang Schreiner https:/ /www.risc.jku.at 50/102
S A
L) ° [) L
Example v Stream lterators 4
[°
cplusplus.com: “C++ Reference”. cplusplus.com: “C++ Reference”.
T . template <class T, class charT=char, class traits=char_traits<charT>,
int main O { class Distance = ptrdiff_t> class istream_iterator;
list<unsigned int> mylist;
list<uns?gned ?nt>f:ite?ator ?tl,itZ;.) Istream iterators are a special input iterator class designed to read
for (unsigned int i=1; i<10; i++) mylist.push_back(i*10); successive elements from an input stream ... whenever operator++ is used on
// 10 20 30 40 50 60 70 80 90 the iterator, it extracts an element (with >>) from the stream.
itl = it2 = mylist.begin(); // ~~
adyance (it2,6); 7 . A special value for this iterator exists: the end-of-stream; When an iterator
T+1t1; i . // is set to this value has either reached the end of the stream (operator void*
itl = mylist.erase (itl); // 10 30 40 50 60 70 80 90 applied to the stream returns false) or has been constructed using its default
// constructor (without associating it with any basic_istream object).
it2 = mylist.erase (it2); // 10 30 40 50 60 80 90
. /7 - - template <class T, class charT=char, class traits=char_traits<charT>,
+Hitl; /7 class Distance = ptrdiff_t> class ostream_iterator;
--it2; // - -
mylist.erase (it1,it2); // 10 30 60 80 90 Ostream iterators are a special output iterator class designed to write into
. . . . /7 . . . successive elements of an output stream ... whenever an assignment operator
for (itl=mylist.begin(); itl!=mylist.end(); ++itl) cout << " " << *itl; is used on the ostream_iterator (even when dereferenced) it inserts a new
1 element into the stream. Optionally, a delimiter can be specified on

construction which is written to the stream after each element is inserted.
10 30 60 80 90
Wolfgang Schreiner https://www.risc.jku.at 51/102 Wolfgang Schreiner https://www.risc.jku.at 52/102

Wolfgang Schreiner

Example

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <iterator>
#include <string>

using namespace std;

int main) {
istream_iterator<char> eos; // end-of-range iterator
istream_iterator<char> iit (cin); // stdin iterator
string mystring;
cout << "Please, enter your name: ";
while (iit'=eos && *iit!=’\n’) {
mystring += *iit;
iit++;
¥
cout << "Your name is " << mystring << ".\n";
return 0;

}

Please, enter your name: HAL 9000
Your name is HAL 9000.

https://www.risc.jku.at

53/102

Wolfgang Schreiner

1. General

2. Sequence Containers
3. lterators

4. Adaptors

5. Associative Containers

6. Algorithms

Wolfgang Schreiner https://www.risc.jku.at

55/102

Example W

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <iterator>
#include <vector>

using namespace std;

int main () {
vector<int> myvector;
for (int i=1; i<10; ++i) myvector.push_back(i*10);

ostream_iterator<int> out_it (cout,", ");
for (vector<int>::iterator it = myvector.begin(); it != myvector.end(); it++)
{
*out_it = *it;
out_it++;
}
return O;

}
10, 20, 30, 40, 50, 60, 70, 80, 90,

https:/ /www.risc.jku.at 54/102

Adaptors v

cplusplus.com: “C++ Reference”.

stack, queue and priority_queue are implemented as container adaptors.
Container adaptors are not full container classes, but classes that provide
a specific interface relying on an object of one of the container classes
(such as deque or list) to handle the elements. The underlying container is
encapsulated in such a way that its elements are accessed by the members of
the container class independently of the underlying container class used.

Container Adaptors
Headers <stack> <queue>
Members stack queue |priority_queue
constructor|* |constructor|constructor|constructor
) size O(1)|size size size
capacity
empty O(1)|empty empty empty
front O(1) front
element access|back O(1) back
top O(1)top top
modifiers push O(1)[push push push
pop O(D)|pop pop pop
Wolfgang Schreiner https://www.risc.jku.at 56/102

Class Template stack %

cplusplus.com: “C++4 Reference”.
template < class T, class Container = deque<T> > class stack;

Stacks are a type of container adaptors, specifically designed to operate in a
LIFO context (last-in first-out), where elements are inserted and extracted
only from the end of the container. Elements are pushed/popped from the
"back" of the specific container, which is known as the top of the stack.

The underlying container may be any of the standard container class templates
or some other specifically designed container class. The only requirement is
that it supports the following operations:

* back()
* push_back()
* pop_back()
Therefore, the standard container class templates vector, deque and list can

be used. By default, if no container class is specified for a particular
stack class, the standard container class template deque is used.

Wolfgang Schreiner

Class Template queue v

https://www.risc.jku.at 57/102

cplusplus.com: “C++ Reference”.

template < class T, class Container = deque<T> > class queue;

queues are a type of container adaptors, specifically designed to operate in a
FIFO context (first-in first-out), where elements are inserted into one end

of the container and extracted from the other. . Elements are pushed into
the "back" of the specific container and popped from its "front".

The underlying container may be one of the standard container class template
or some other specifically designed container class. The only requirement is
that it supports the following operations:

front ()
back()
push_back()
pop_£front ()

* ¥ ¥ *

Therefore, the standard container class templates deque and list can be
used. By default, if no container class is specified for a particular queue
class, the standard container class template deque is used.

Wolfgang Schreiner

https://www.risc.jku.at 59/102

AN

[} °
Example N4
°

cplusplus.com: “C++ Reference”.
#include <iostream>
#include <stack>
using namespace std;
int main () {

stack<int> mystack;

for (int i=0; i<5; ++i) mystack.push(i);

while (!mystack.empty()) {

cout << " " << mystack.top();
mystack.pop() ;

}

return O;
¥
43210

Wolfgang Schreiner https:/ /www.risc.jku.at 58/102
7\
[} °
Example v
°

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <queue>
using namespace std;

int main) {
queue<int> myqueue;
int myint;

do { // enter integers (0 to end)
cin >> myint;
myqueue.push (myint);

} while (myint);

while (!myqueue.empty()) { // print integers (in the same order
cout << " " << myqueue.front(); // in which they were entered)
myqueue.pop() ;

return O;

}

Wolfgang Schreiner https://www.risc.jku.at 60/102

Wolfgang Schreiner

Class Template priority_queue \

cplusplus.com: “C++ Reference”.

template < class T, class Container = vector<T>,
class Compare = less<typename Container::value_type> > class priority_queue;

Priority queues are a type of container adaptors, specifically designed such
that its first element is always the greatest of the elements it contains,
according to some strict weak ordering condition. This context is similar to
a heap where only the max heap element can be retrieved and elements can be
inserted indefinitely. . Elements are popped from the "back" of the
specific container, which is known as the top of the priority queue.

The underlying container may be any ... container class. The only requirement
is that it must be accessible through random access iterators and it must
support the following operations:

* front()
* push_back()
* pop_back()

Therefore, the standard container class templates vector and deque can be
used. By default ... the standard container class template vector is used.

/™ \
Example .ﬁ /.

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <queue>
using namespace std;

int main (O {
priority_queue<int> mypq;
mypq.push(30) ;
mypq.push(100) ;
mypq.push(25) ;
mypq . push(40) ;

while (!mypq.empty()) {
cout << " " << mypq.top();
mypq.pop() ;

return 0;

}

100 40 30 25

Wolfgang Schreiner

https://www.risc.jku.at 61/102

https://www.risc.jku.at 63/102

AN
Class Template priority _queue '& {'

cplusplus.com: “C++ Reference”.

template < class T, class Container = vector<T>,
class Compare = less<typename Container::value_type> > class priority_queue;

template <class T> struct less : binary_function <T,T,bool> {
bool operator() (const T& x, const T& y) const {return x<y;}
3

Compare is a class such that the expression comp(a,b), where comp is an object
of this class and a and b are elements of the container, returns true if a is
to be placed earlier than b in a strict weak ordering operation. This can
either be a class implementing a function call operator or a pointer to a
function. This defaults to less<T>, which returns the same as applying the
less-than operator (a<b).

The priority_queue object uses this expression when an element is inserted or
removed from it (using push or pop, respectively) to grant that the element
popped is always the greater in the priority queue.

Wolfgang Schreiner https:/ /www.risc jku.at 62/102
o,
.M EQ
W
1. General
2. Sequence Containers
3. lterators
4. Adaptors
5. Associative Containers
6. Algorithms
Wolfgang Schreiner https:/ /www.risc jku.at 64/102

Associative Containers

Elements organized for fast access by keys
<set>: class templates set and multiset.
(Multi)sets of elements (elements themselves are the keys).
<map>: class templates map and multimap.
Mappings of keys to (sets of) values.
Common operations
Most operations of sequence containers.

Except sequential access, random access, modification of

begin and end of container.
Observers: key_comp, value_comp.
Miscellaneous operations: find, count, lower_bound, upper_bound,
equal range.

Chosen according to required mathematical functionality.

Wolfgang Schreiner https://www.risc.jku.at 65/102
4
Example K *
N4

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <set>
using namespace std;

int main () {
int myints[] = {75,23,65,23,42,13}; // 23 occurs twice
set<int> myset (myints,myints+6);

myset.insert(23); // once more 23 is inserted

for (set<int>::iterator it=myset.begin() ; it != myset.end(); it++)
cout << " " << x*it;
return O;

}

13 23 42 65 75

Wolfgang Schreiner https://www.risc.jku.at 67/102

A

. [} J

Class Templates set and multiset 4

°
template < class Key, class Compare = less<Key>,
class Allocator = allocator<Key> > class (multi)set;

Sets are a kind of associative containers that stores unique elements, and in

which the elements themselves are the keys. Internally, the elements in a

set are always sorted from lower to higher following a specific strict weak

ordering criterion set on container construction. Sets are typically

implemented as binary search trees. Therefore, the main characteristics of

set as an associative container are:

* Unique element values: no two elements in the set can compare equal to
each other. For a similar associative container allowing for multiple
equivalent elements, see multiset.

* The element value is the key itself. For a similar associative container
where elements are accessed using a key, but map to a value different than
this key, see map.

* Elements follow a strict weak ordering at all times. Unordered associative
arrays, like unordered_set, are available in implementations following TR1.

Multisets ... allow for multiple keys with equal values.

Wolfgang Schreiner https:/ /www.risc.jku.at 66,/102
7\
[} J
Example 4
°
cplusplus.com: “C++ Reference”.

#include <iostream>

#include <set>

using namespace std;

int main () {
int myints[] = {75,23,65,23,42,13}; // 23 occurs twice
multiset<int> myset (myints,myints+6);
myset.insert(23); // once more 23 is inserted
for (multiset<int>::iterator it=myset.begin() ; it != myset.end(); it++)

cout << " " << xit;
return O;

}

13 23 23 23 42 65 75

Wolfgang Schreiner https://www.risc.jku.at 68/102

N\,
W

Class Templates map and multimap

template < class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key,T> > > class (multi)map;

Maps are a kind of associative containers that stores elements formed by the
combination of a key value and a mapped value. In a map, the key value is
generally used to uniquely identify the element, while the mapped value is some
sort of value associated to this key. Types of key and mapped value may differ.
Internally, the elements in the map are sorted from lower to higher key value
following a specific strict weak ordering criterion set on construction.
Therefore, the main characteristics of a map as an associative container are:

* Unique key values: no two elements in the map have keys that compare equal
to each other. For a similar associative container allowing for multiple
elements with equivalent keys, see multimap.

* Each element is composed of a key and a mapped value. For a simpler
associative container where the element value itself is its key, see set.

* Elements follow a strict weak ordering at all times.

Maps ... implement the direct access operator (operator[]) which allows for
direct access of the mapped value.

Multimaps . allow different elements to have the same key value.
Wolfgang Schreiner https://www.risc.jku.at 69/102
A
D) (]
Example 4
[

cplusplus.com: “C++ Reference”.

#include <iostream>
#include <map>
using namespace std;

int main () {
multimap<char,int> mymultimap;
multimap<char,int>::iterator it;

mymultimap.insert (pair<char,int>(’a’,10));
mymultimap.insert (pair<char,int>(’b’,20));

mymultimap.insert (pair<char,int>(’b’,150));

for (it=mymultimap.begin() ; it != mymultimap.end(); it++)

cout << (*it).first << " => " << (*it).second << endl;
return O;
}
a => 10
b => 20
b => 150

Wolfgang Schreiner https://www.risc.jku.at 71/102

AN

[) (]
Example W
°
cplusplus.com: “C++ Reference”.
#include <iostream>
#include <map>
using namespace std;
int main () {
map<char,int> mymap;
map<char,int>::iterator it;
mymap[’b’] = 100;
mymap[’a’] = 200;
mymap[’c’] = 300;
for (it=mymap.begin() ; it != mymap.end(); it++)
cout << (*xit).first << " => " << (*it).second << endl;
return O;
}
a => 200
b => 100
c => 300
Wolfgang Schreiner https:/ /www.risc.jku.at 70/102
7\
. . [} J
Member Function find N\
o

iterator find (const key_type& x) const;

Searches the container for an element with a value of x and returns an
iterator to it if found, otherwise it returns an iterator to the
element past the end of the container.

#include <iostream>
#include <map>
using namespace std;

int main ()

{
map<char,int> mymap;
map<char,int>::iterator it;

mymap[’a’]=50; mymap[’b’]=100;

it = mymap.find(’b’);
if (it != mymap.end()) mymap.erase (it);
cout << "a => " << mymap.find(’a’)->second << ’\n’;
return O;
¥

Wolfgang Schreiner https://www.risc.jku.at 72/102

Member Function count

size_type count (const key_type& x) const;

Searches the container for an element with a key of x and returns the number
of times the element appears in the container.

#include <iostream>
#include <set>
using namespace std;

int main () {
set<int> myset;
for (int i=1; i<5; i++) myset.insert(i*3);
for (int i=0;i<10; i++) {
cout << ij;
if (myset.count(i)>0)
cout << " is an element of myset.\n";
else cout << " is not an element of myset.\n";

// set: 3 6 9 12

¥
return O;
}
0 is not an element of myset.
Wolfgang Schreiner https://www.risc.jku.at 73/102
7"\
Member Function equal range .E {'
[]

pair<iterator,iterator> equal_range (const key_type& x) const;

Returns the bounds of a range that includes all the elements in the container
with a key that compares equal to x. If x does not match any key in the
container, the range has a length of zero, with both iterators pointing to
the nearest value greater than x, if any, or to the element past the end of
the container if x is greater than all the elements in the container.

#include <iostream>
#include <set>
using namespace std;
int main () {
int myints[l= {77,30,16,2,30,30};
multiset<int> mymultiset (myints, myints+6); // 2 16 30 30 30 77
pair<multiset<int>::iterator,multiset<int>::iterator>
ret = mymultiset.equal_range(30); //
for (multiset<int>::iterator it=ret.first; it!=ret.second; ++it)
cout << " " << *it;
return 0;

}

30 30 30

Wolfgang Schreiner https://www.risc.jku.at 75/102

o/,

Member Functions lower/upper bound 'E <

iterator lower/upper_bound (const key_type& x);

lower_bound returns an iterator pointing to the first element in the container
whose key does not compare less than x (using the container’s comparison object),
i.e. it is either equal or greater. upper_bound returns an iterator pointing

to the first element in the container whose key compares greater than x.

#include <iostream>

#include <map>

using namespace std;

int main () {
map<char, int> mymap;
mymap[’a’]=20; mymap[’b’]1=40; mymap[’c’]=60; mymap[’d’]1=80; mymap[’e’]=100;
map<char,int>::iterator itlow=mymap.lower_bound (’b’); // itlow points to b
map<char,int>::iterator itup=mymap.upper_bound (’d’); // itup points to e
mymap.erase(itlow,itup); // erases [itlow,itup)
for (map<char,int>::iterator it=mymap.begin() ; it != mymap.end(); it++)

cout << (*it).first << " => " << (*it).second << " ";

return O;

}

a => 20 e => 100

Wolfgang Schreiner https:/ /www.risc jku.at 74/102
()
.M EQ
W
1. General
2. Sequence Containers
3. lterators
4. Adaptors
5. Associative Containers
6. Algorithms
Wolfgang Schreiner https:/ /www.risc jku.at 76/102

. "\
Header <algorithm> N

The standard library comes with a rich set of (so-called) algorithms.
Algorithm: a template function operating on a range of elements.
A range is a sequence of objects accessible by iterators/pointers.

Iterator type is argument of function template.
Iterators of this type are arguments to function.

template<class InlIter, class T>
Inlter find(InIter first, InIter last, const T& value);

Works on any object that provides suitable iterators/pointers.
Containers, plain arrays, streams.
Algorithms and containers are mostly orthogonal.
New algorithms can be written without modifying containers.
Algorithms will be automatically applicable on containers.
New containers can be developed without modifying algorithms.

Containers can be immediately processed by algorithms.

When processing containers, remember the already available algorithms.

Wolfgang Schreiner https://www.risc.jku.at 77/102
S
Example * *
W

#include <iostream>
#include <functional>
using namespace std;

struct Compare : public binary_function<int,int,bool> {
bool operator() (int a, int b) {return (a==b);}
};

int main () {
Compare: :first_argument_type inputl;
Compare: :second_argument_type input2;
cout << "Please enter first number: " cin >> inputl;
cout << "Please enter second number: "; cin >> input2;
cout << "Numbers " << inputl << " and " << input2;
Compare Compare_object;
Compare: :result_type result = Compare_object (inputl,input2);
if (result)
cout << " are equal.\n";
else
cout << " are not equal.\n";
return 0;
}

Wolfgang Schreiner https://www.risc.jku.at 79/102

.M.EO
e

Header <functional>

Many algorithms operate on function objects.
Function object: any object that provides function application.

Any function and any object that provides operator ().
struct F { int operator() (int a) {return a;} };
F f; int x = £(0); // function-like syntax with object f

<functional> provides a collection of function object templates.

Unary function objects inherit from unary_function.
template <class Arg, class Result>
struct unary_function {
typedef Arg argument_type;
typedef Result result_type;
};

Binary function objects inherit from binary_function.
template <class Argl, class Arg2, class Result>
struct binary_function {
typedef Argl first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};

Wolfgang Schreiner https:/ /www.risc.jku.at 78/102

.M.E.
e

Function Objects

cplusplus.com: “C++ Reference”.

plus Addition function object class

minus Subtraction function object class

multiplies Multiplication function object class

divides Division function object class

modulus Modulus function object class

negate Negative function object class

equal _to Function object class for equality comparison
not_equal_to Function object class for non-equality comparison

greater Function object class for greater-than inequality comparison

less Function object class for less-than inequality comparison
greater_equal Function object class for greater-than-or-equal-to comparison
less_equal Function object class for less-than-or-equal-to comparison
logical_and Logical AND function object class

logical_or Logical OR function object class

logical not Logical NOT function object class

Wolfgang Schreiner https://www.risc.jku.at 80/102

Example

cplusplus.com: “C++4 Reference”.

template <class T> struct less : binary_function <T,T,bool> {
bool operator() (const T& x, const T& y) const
{return x<y;}

};

Objects of this class can be used with some standard algorithms such as sort,
merge or lower_bound.

#include <iostream>
#include <functional>
#include <algorithm>
using namespace std;

int main () {
int foo[]={10,20,5,15,25};
sort (foo, foo+5, less<int>()); // 5 10 15 20 25

return O;
}
Wolfgang Schreiner https://www.risc.jku.at 81/102
7\
Algorithm for_each L *
N4

clusplus.com: “C++ Reference”.

template <class InputlIterator, class Function>
Function for_each (Inputlterator first, InputIterator last, Function f);

Applies function f to each of the elements in the range [first,last).
The behavior of this template function is equivalent to:

template<class Inputlterator, class Function>
Function for_each(Inputlterator first, InputIterator last, Function f)
{
while (first!=last) f(xfirst++);
return f;

}

Wolfgang Schreiner https://www.risc.jku.at 83/102

AN
N

Non-Modifying Sequence Operations

cplusplus.com: “C++ Reference”.

for_each Apply function to range

find Find value in range

find if Find element in range

find_end Find last subsequence in range

find first_of Find element from set in range

adjacent_find Find equal adjacent elements in range

count Count appearances of value in range

count_if Return number of elements in range satisfying condition
mismatch Return first position where two ranges differ
equal Test whether the elements in two ranges are equal
search Find subsequence in range

searchn Find succession of equal values in range

These operations do not modify the contents of the sequence.

Wolfgang Schreiner https:/ /www.risc.jku.at 82/102

&N,
e

Example

clusplus.com: “C++ Reference”.

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

void myfunction (int i) { cout << " " << i; }
struct myclass { void operator() (int i) {cout << " " << i;} };

int main O {
vector<int> myvector;
myvector.push_back(10); myvector.push_back(20); myvector.push_back(30);

for_each (myvector.begin(), myvector.end(), myfunction);

myclass myobject;
for_each (myvector.begin(), myvector.end(), myobject);
return O;

}

10 20 30 10 20 30

Wolfgang Schreiner https://www.risc.jku.at 84/102

Algorithm find

clusplus.com: “C++ Reference”.

template <class InputIterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& value);

Returns an iterator to the first element in the range [first,last) that
compares equal to value, or last if not found.

The behavior of this function template is equivalent to:

template<class InputIterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& value)

{
for (;first!=last; first++) if (*first==value) break;
return first;

}

Complexity

At most, performs as many comparisons as the number of elements in the
range [first,last).

Wolfgang Schreiner

Algorithm find if

https://www.risc.jku.at 85/102

clusplus.com: “C++ Reference”.

template <class Inputlterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last, Predicate pred);

Returns an iterator to the first element in the range [first,last) for which
applying pred to it, is true.

The behavior of this function template is equivalent to:

template<class Inputlterator, class Predicate>
InputIterator find_if(Inputlterator first, InputIterator last, Predicate pred)

{
for (; first!=last ; first++) if (pred(xfirst)) break;
return first;

}

Wolfgang Schreiner

https://www.risc.jku.at 87/102

Example

17\
N4

clusplus.com: “C++ Reference”.

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int main () {

}

int myints[] = { 10, 20, 30 ,40 };

int *p = find(myints,myints+4,30);

++p;

cout << "The element following 30 is " << *p << endl;

vector<int> myvector (myints,myints+4);

vector<int>::iterator it = find (myvector.begin(), myvector.end(), 30);
++it;

cout << "The element following 30 is " << *it << endl;

return O;

The element following 30 is 40
The element following 30 is 40

Wolfgang Schreiner

Example

https:/ /www.risc.jku.at 86,/102

&N,
e

clusplus.com: “C++ Reference”.

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

bool Is0dd (int i) { return ((i%2)==1); }

int main () {

vector<int> myvector;

myvector.push_back(10) ;
myvector.push_back(25) ;
myvector.push_back(40) ;
myvector.push_back(55) ;

vector<int>::iterator it = find_if (myvector.begin(), myvector.end(), Is0dd);
cout << "The first odd value is " << *it << endl;
return O;

}

The first odd value is 25

Wolfgang Schreiner

https://www.risc.jku.at 88/102

Modifying Sequence Operations .E {'
[
copy Copy range of elements
copy-backward Copy range of elements backwards
swap Exchange values of two objects
swap_ranges Exchange values of two ranges
iter_swap Exchange values of objects pointed by two iterators
transform Apply function to range
replace Replace value in range
replace_if Replace values in range
replace_copy Copy range replacing value
replace_copy-if Copy range replacing value
£i1l Fill range with value
filln Fill sequence with value
generate Generate values for range with function
generate n Generate values for sequence with function
remove Remove value from range
remove_if Remove elements from range
remove_copy Copy range removing value
remove_copy-if Copy range removing values
unique Remove consecutive duplicates in range
unique_copy Copy range removing duplicates
reverse Reverse range
reverse_copy Copy range reversed
rotate Rotate elements in range
rotate_copy Copy rotated range
random_shuffle Rearrange elements in range randomly
partition Partition range in two
stable_partition Parition range in two - stable ordering
These operations modify the contents of the sequence.
Wolfgang Schreiner https://www.risc.jku.at 89/102
o/
Example .ﬁ {'
[J

clusplus.com: “C++ Reference”.

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int main () {
int myints[]1={10,20,30,40,50,60,70};
vector<int> myvector;

myvector.resize(7); // allocate space for 7 elements
copy (myints, myints+7, myvector.begin());

for (vector<int>::iterator it=myvector.begin(); it!=myvector.end(); ++it)
cout << " " << x¥it;
return O;

}

10 20 30 40 50 60 70

Wolfgang Schreiner https://www.risc.jku.at 91/102

.M.EO

Algorithm copy 2

template <class InlIter, class OutIter>
OutIter copy (InIter first, InIter last, OutIter result);

Copies the elements in the range [first,last) into a range beginning at result.
Returns an iterator to the last element in the destination range.

The behavior of this function template is equivalent to:

template<class Inlter, class OutIter>
OutIter copy (InIter first, InIter last, OutIter result)
{

while (first!=last) *result++ = *first++;
return result;

}

If both ranges overlap in such a way that result points to an element in the
range [first,last), the function copy_backward should be used instead.

https:/ /www.risc.jku.at 90/102

™,
W

Wolfgang Schreiner

Algorithm transform

template < class InlIter, class Outlter, class UnaryOp >
OutIter transform (InIter firstl, InIter lastl, OutIter result, UnaryOp op);

template < class InIterl, class InIter2, class OutlIter, class BinaryOp >
OutIter transform (InIterl firstl, InIterl lasti,
InIter2 first2, OutIter result, BinaryOp binary_op);

The first version applies op to all the elements in the input range
([firstl,lastl)) and stores each returned value in the range beginning at
result. The second version uses as argument for each call to binary_op one
element from the first input range ([firstl,lastl)) and one element from the
second input range (beginning at first2). The behavior of this function
template is equivalent to:

template < class InIter, class OutIter, class UnaryOperator >
OutIter transform (InIter firstl, InIter lastil,
OutIter result, UnaryOperator op)
{
while (firstl != lastl)
xresult++ = op(*firsti++); // or: *result++=binary_op(*firstl++,*first2++);
return result;

}

Wolfgang Schreiner https://www.risc.jku.at 92/102

Example

clusplus.com: “C++ Reference”.

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int op_increase (int i) { return ++i; }
int op_sum (int i, int j) { return i+j; }

int main) {
vector<int> first, second;
for (int i=1; i<6; i++) first.push_back (i*10); // first: 10 20 30 40 50
second.resize(first.size()); // allocate space

transform (first.begin(), first.end(), second.begin(), op_increase);
// second: 11 21 31 41 51

transform (first.begin(), first.end(), second.begin(), first.begin(), op_sum);
// first: 21 41 61 81 101

return 0;
}
Wolfgang Schreiner https://www.risc.jku.at 93/102
7\
) o
Example %
[]

clusplus.com: “C++ Reference”.

#include <iostream>
#include <algorithm>
#include <vector>
#include <cstdlib>
using namespace std;

int RandomNumber () { return (rand()7%100); }
struct c_unique { int c; c_unique() {c=0;} int operator() () {return ++c;} };

int main () {
vector<int> myvector (8); // e.g.: 57 87 76 66 85 54 17 15
generate (myvector.begin(), myvector.end(), RandomNumber) ;

c_unique UniqueNumber; // 123456738
generate (myvector.begin(), myvector.end(), UniqueNumber) ;
return O;

Wolfgang Schreiner https://www.risc.jku.at 95/102

Algorithm generate

.M.EO
e

while (first != last)

Wolfgang Schreiner

clusplus.com: “C++ Reference”.

template <class ForwardIterator, class Generator>
void generate (ForwardIterator first, ForwardIterator last, Generator gen);

The behavior of this function template is equivalent to:

template <class ForwardIterator, class Generator>
void generate (ForwardIterator first, ForwardIterator last, Generator gen)

xfirst++ = gen();

https://www.risc.jku.at

Sorting and Operations on Sorted Ranges

Sets the value of the elements in the range [first,last) to the value returned
by successive calls to gen.

94/102

Y

X,

4

sort

stable_sort
partial_sort
partial_sort_copy

nth_element
lower_bound
upper_bound
equal _range
binary_search

merge

inplace_merge

includes

set_union
set_intersection
set_difference
set_symmetric_difference

Wolfgang Schreiner

cplusplus.com: “C++ Reference”.

Sort elements in range

Sort elements preserving order of equivalents

Partially Sort elements in range

Copy and partially sort range

Sort element in range

Return iterator to lower bound
Return iterator to upper bound
Get subrange of equal elements
Test if value exists in sorted array

Merge sorted ranges

Merge consecutive sorted ranges

Test whether sorted range includes another one

Union of two sorted ranges

Intersection of two sorted ranges
Difference of two sorted ranges

Symmetric difference of two sorted ranges

https://www.risc.jku.at

96/102

Algorithm sort

clusplus.com: “C++ Reference”.

template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);

Sorts the elements in the range [first,last) into ascending order. The
elements are compared using operator< for the first version, and comp for the
second. Elements that would compare equal to each other are not guaranteed to
keep their original relative order.

Complexity

Approximately NxlogN comparisons on average (where N is last-first).

In the worst case, up to N2, depending on specific sorting algorithm used by
library implementation.

Wolfgang Schreiner https://www.risc.jku.at 97/102
S
Algorithm lower bound) *
W

clusplus.com: “C++ Reference”.

template <class FwdIterator, class T> FwdIterator lower_bound
(FwdIterator first, FwdIterator last, const T& val);

template <class FwdIterator, class T, class Compare> FwdIterator lower_bound
(FwdIterator first, FwdIterator last, const T& val, Compare comp);

Returns an iterator pointing to the first element in the range [first,last)
which does not compare less than val.

The elements are compared using operator< for the first version, and comp
for the second. The elements in the range shall already be sorted according
to this same criterion (operator< or comp), or at least partitioned with
respect to val. The function optimizes the number of comparisons performed
by comparing non-consecutive elements of the sorted range, which is
specially efficient for random-access iterators.

Complexity

On average, logarithmic in the distance between first and last: Performs
approximately log2(N)+1 element comparisons (where N is this distance). On
non-random-access iterators, the iterator advances produce themselves an
additional linear complexity in N on average.

Wolfgang Schreiner https://www.risc.jku.at 99/102

AN
N

Example

clusplus.com: “C++ Reference”.
#include <iostream>

#include <algorithm>

#include <vector>

using namespace std;

bool myfunction (int i,int j) { return (i<j); }
struct myclass { bool operator() (int i,int j) { return (i<j);} };

int main () {
int myints([] = {32,71,12,45,26,80,53,33};
vector<int> myvector (myints, myints+8); // 32 71 12 45 26 80 53 33
sort (myvector.begin(), myvector.begin()+4); // (12 32 45 71) 26 80 53 33

// 12 32 45 71 (26 33 53 80)
sort (myvector.begin()+4, myvector.end(), myfunction);

myclass myobject; // (12 26 32 33 45 53 71 80)
sort (myvector.begin(), myvector.end(), myobject);

return O;
Wolfgang Schreiner https:/ /www.risc.jku.at 98/102
7\
) ®
Example 4
o

clusplus.com: “C++ Reference”.

// std::cout
// std::lower_bound, std::upper_bound, std::sort
// std::vector

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

int main () {
int myints[] = {10,20,30,30,20,10,10,20};
vector<int> v(myints,myints+8);
sort (v.begin(), v.end());

// 10 20 30 30 20 10 10 20
// 10 10 10 20 20 20 30 30

vector<int>::iterator low,up;
low=lower_bound (v.begin(), v.end(), 20); // -
up=upper_bound (v.begin(), v.end(), 20); // -

cout << "lower_bound at position " << (low- v.begin()) << ’\n’;
cout << "upper_bound at position " << (up - v.begin()) << ’\n’;
return O;

}

lower_bound at position 3

upper_bound at position 6

Wolfgang Schreiner https://www.risc.jku.at 100/102

Algorithm merge 4 Example 4

Lo ”
clusplus.com: “C++ Reference” . clusplus.com: “C++ Reference”.
template <class InIterl, class InIter2, class OutIter>
OutIter merge (InIterl firstl, InIterl lastl, InIter2 first2, InIter2 last2,

OutIter result [, Compare compl);

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

Combines the elements in the sorted ranges [firstl,lastl) and [first2,last2),
into a new range beginning at result with its elements sorted. The comparison
for sorting uses either operator< for the first version, or comp for the second.
For the function to yield the expected result, the elements in the both ranges
shall already be ordered according to the same strict weak ordering criterion
(operator< or comp). The resulting range is also sorted according to it.

int main) {
int first[] = {5,10,15,20,25};
int second[] = {50,40,30,20,10};
vector<int> v(10);

sort (first,first+5);
sort (second,second+5);

The behavior of this function template is equivalent to:
merge (first,first+5,second,second+5,v.begin());

template <class InIterl, class InIter2, class OutIter>
OutIter merge (InIterl firstl, InIterl lastl, InIter2 first2, InlIter2 last2,
OutIter result) {
while (true) {
*result++ = (xfirst2<*first1)? *first2++ : *xfirsti++;
if (firstl==lastl) return copy(first2,last2,result);
if (first2==last2) return copy(firstl,lastl,result); } }
Wolfgang Schreiner https://www.risc.jku.at 101/102 Wolfgang Schreiner https:/ /www.risc.jku.at 102/102

for (vector<int>::iterator it=v.begin(); it!=v.end(); ++it)
cout << " " << *it;
return O;

5 10 10 15 20 20 25 30 40 50

