
Templates

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

Wolfgang Schreiner https://www.risc.jku.at 1/51

Templates

In C++, types can also serve as parameters.

Parametric polymorphism: genericity based on types as parameters.

An extension to the object-oriented paradigm of type polymorphism
(genericity based on inheritance).

Templates: functions or classes parameterized over types.

By instantiating the template parameters with concrete types,
concrete functions and classes are constructed.
Instantiation is resolved at compile time (no runtime overhead).

Template metaprogramming: let compiler execute programs.
Templates allow recursion, selection, and computation.

Template programs are executed at compile-time.

Selection of different variants of code, modification of the behavior of
generated code, set policies for runtime code execution.

The C++ standard library makes heavy use of templates.

Wolfgang Schreiner https://www.risc.jku.at 2/51

1. Function Templates

2. Class Templates

3. Advanced Use of Templates

4. Example: Generic Lists

Wolfgang Schreiner https://www.risc.jku.at 3/51

Function Templates

template<typename T> T min(T a, T b) {

T c = a;

if (b < a) c = b;

return c;

}

int x = min<int>(10, 20); // explicit instantiation of min<int>

float y = min<float>(10.4, 20.3); // explicit instantiation of min<float>

int z = min(10, 20); // automatic instantiation of min<int>

template<typename T>: a template with type parameter T .
Also class T denotes type parameters.

Typically used, if T shall denote a class.

fun <A>(. . .): instantiation of parameter T by concrete type A.
Instantiated function declaration is generated and compiled.
Type checking occurrs for each instantiation separately.

fun(. . .): automatically deduced instantiation.
In most cases, the compiler is able to automatically deduce the
appropriate instantiation.

Each instantiation of a function template denotes a separate function.
Wolfgang Schreiner https://www.risc.jku.at 4/51

Operator Templates

Like functions, also operators may be defined as templates.

template<typename T> int operator+(T x, int y)

{

return x.getIntValue() + y;

}

class Int {

int x;

public:

Int(int x) { this->x = x; }

int getIntValue() { return x; }

};

Int i(5);

int j = i+1; // automatic: operator+<Int>

int k = operator+<Int>(i, 1); // explicit instantiation

Also for operators, argument types may be automatically derived.

Wolfgang Schreiner https://www.risc.jku.at 5/51

Template Source

Where to put the source of a template?

// min.h

template<typename T> T min(T a, T b) { ... }

// file1.cpp // file2.cpp

#include "min.h" #include "min.h"

... min<int>(...) min<int>(...) ...

Short answer: place it in a header file.

Each source file using the template includes the file.
Each object file contains set of generated template instantiations.
Linker merges duplicate instantiations in finally produced executable.

Disadvantage: compilation overhead.

Same instantiation repeatedly generated, type-checked, and compiled.
Long compilation times, large object files.

A more comprehensive answer will be given later.

Wolfgang Schreiner https://www.risc.jku.at 6/51

Example: A Generic Sorting Function (V1)

template<typename T> void sort(T a[], int n) {

for (int i=0; i<n-1; i++) {

for (int j=n-1; i<j; j--) {

if (a[j] < a[j-1]) {

T b = a[j];

a[j] = a[j-1];

a[j-1] = b;

}

}

}

}

int a[100];

sort(a, 100); // automatic: sort<int>

Function sorts arrays of any base type.
Type must provide a comparison operator <.

What if operator < does not exist?
Compilation fails; we might want to state the requirement.

What if operator < is not appropriate?
We might wish another sorting criterium.

Code now implicitly depends on a “hard-wired” comparison operation.
Wolfgang Schreiner https://www.risc.jku.at 7/51

Concepts (C++20)

Concepts are named sets of requirements on template arguments.

#include <concepts>

using namespace std;

template<typename T>

requires totally_ordered<T> // T must provide operators ==,!=,<,>,<=,>=

void sort(T a[], int n) { ... }

Concepts are predicates evaluated at compile-time.
Based on tests for the validity of expressions/types and on class
templates with static constants (see “meta-programming” later).

Standard library <concepts> of predefined concepts.
New concepts may be defined with the keyword concept.
template<typename T> concept totally_ordered =

equality_comparable<T> && __detail::__partially_ordered_with<T,T>;

Invalid template instantations can be detected and reported early
(without compiling the instantiated code).

Wolfgang Schreiner https://www.risc.jku.at 8/51

Example: A Generic Sorting Function (V2)

class IntComparator { public:

static bool isSorted(int a, int b) { return a <= b ; }

};

class StringComparator { public:

static bool isSorted(char *a, char *b) { return strcmp(a, b) <= 0; }

};

template<typename T, class C> void sort(T a[], int n) {

for (int i=0; i<n-1; i++) {

for (int j=n-1; i<j; j--) {

if (!C::isSorted(a[j-1],a[j])) {

T b = a[j]; a[j] = a[j-1]; a[j-1] = b;

}

}

}

}

int a[100]; sort<int, IntComparator>(a, 100);

char* b[100]; sort<char*, StringComparator>(b, 100);

The sorter is instantiated with a class holding the comparison operation.
Wolfgang Schreiner https://www.risc.jku.at 9/51

Value Parameters

Template parameters may be also values.

template<int N, typename T> void fill(T a[N], T x)

{

for (int i=0; i<N; i++) a[i] = x;

}

int a[3];

fill<3,int>(a, 7); // explicit instantiation

fill<3>(a,7); // automatic: fill<3,int>

template<T v>: a template with value parameter v of type T .
T must be an integral, enumeration, or pointer/reference type.

fun <a>(. . .):
Argument a must be a compile-time constant (a constant expression
or the address of an object with external linkage).
Must be given by explicit instantiation (subsequent type parameters
may be automatically instantiated).

Value parameters in templates may be also used in type declarations.
Wolfgang Schreiner https://www.risc.jku.at 10/51

Example: A Generic Sorting Function (V3)

template<int N, typename T> void sort(T a[N]) {

for (int i=0; i<N-1; i++) {

for (int j=N-1; i<j; j--) {

if (a[j] < a[j-1]) {

T b = a[j];

a[j] = a[j-1];

a[j-1] = b;

}

}

}

}

int a[100];

sort<100>(a); // automatic: sort<100, int>

The sorter is instantiated with the array length.

Wolfgang Schreiner https://www.risc.jku.at 11/51

Example: A Generic Sorting Function (V4)

template<typename T, bool isSorted(T, T)> void sort(T a[], int n) {

for (int i=0; i<n-1; i++) {

for (int j=n-1; i<j; j--) {

if (!isSorted(a[j-1], a[j])){

T b = a[j];

a[j] = a[j-1];

a[j-1] = b;

}

}

}

}

inline bool lessEqual(int x, int y) { return x <= y; }

int a[100];

sort<int, lessEqual>(a, 100);

Comparison function becomes value parameter of template.
Function has generic signature bool isSorted(T, T).
Type parameter T must appear in template signature before.
If defined in current file, comparison function may be inlined.

The sorter is instantiated with the comparison operation.
Wolfgang Schreiner https://www.risc.jku.at 12/51

Specializing Function Templates

For special instantiations, alternative function definitions may be given.

double pow(double x, double y); // exponentiation

int isqrt(int x); // integer square root

template<typename T> T root(T x, T y) {

return T(pow(x, 1.0/y)); // conversion to T

}

template<> int root<int>(int x, int y) {

if (y == 2)

return isqrt(x); // special implementation

else

return int(pow(x, 1.0/y));

}

int r1 = root(4, 2); // root<int> -> isqrt(4)

double r2 = root(4.5, 2.0); // root<double> -> pow(4.5, 0.5)

For achieving higher performance, a generic function implementation may
be augmented by special implementations.

Wolfgang Schreiner https://www.risc.jku.at 13/51

Example: A Generic Sorting Function (V5)

// a generic sorting function (V1)

template<typename T> void sort(T a[], int n) { ... }

// provide sorting function applicable to strings

template<> void sort<char*>(char* a[], int n) {

for (int i=0; i<n-1; i++) {

for (int j=n-1; i<j; j--) {

if (strcmp(a[j], a[j-1]) < 0) {

T b = a[j];

a[j] = a[j-1];

a[j-1] = b;

}

}

}

}

char* a[100];

sort(a, 100); // automatic: sort<char*>

By specialization, a sorting function with another comparison operation
(or another specialized sorting algorithm) may be used.

Wolfgang Schreiner https://www.risc.jku.at 14/51

Overloading Function Templates

template<typename T> void func(T x, T y) { ... }

template<typename T> T func(T x) { ... }

template<typename T, typename U> U func(T x) { ... }

func(y, y); // automatic: func<float>(y, y)

int x = func<int>(1); // explicit instantiation needed

float y = func<int, float>(x); // explicit instantiation needed

Function templates may be overloaded.

Same function name but different template/function parameters.
If appropriate instantiation can be derived from the types of the
function arguments, no explicit instantiation is needed.
If different function templates have same names and function
parameters, explicit instantiation is needed.

Explicit instantiation may be required in case of disambiguities.

Wolfgang Schreiner https://www.risc.jku.at 15/51

Changing Parameter Types

To change some parameter types, overload the function template.

double pow(double x, double y); // exponentiation

double iroot(double x, int y); // root computation

template<typename T> T root(T x, T y) {

return T(pow(x, 1.0/y)); // conversion to T

}

template<typename T, typename U> T root(T x, U y) {

return T(iroot(x, y)); // conversion to T

}

double r2 = root(4.5, 2.0); // root<double> -> pow(4.5, 0.5)

double r2 = root(4.5, 2); // root<double,int> -> iroot(4.5, 2)

Specialization and overloading gives large flexibility in selecting the most
efficient implementations for arbitrary combinations of types.

Wolfgang Schreiner https://www.risc.jku.at 16/51

1. Function Templates

2. Class Templates

3. Advanced Use of Templates

4. Example: Generic Lists

Wolfgang Schreiner https://www.risc.jku.at 17/51

Class Templates

template<typename T> class Point {

T x; T y;

public:

Point(T a, T b): x(a), y(b) { }

T getX() { return x; }

Point flip() { return Point(-x,-y); }

static Point copy(Point p) { return Point(p.x, p.y); }

};

Point<int> p(5, 3);

int x = p.getX();

Point<int> q = p.flip();

Point<int> r = Point<int>::copy(q);

template<typename T>: also possible for declaration of class C .
Within the declaration, C is a synonym for instantiation C<T>.
Instantiation by any other type A must be explicitly stated as C<A>.

C<A>: instantiation of parameter T by concrete type A.
Outside declaration, class template must be explicitly instantiated
(C++17: template arguments may be deduced in certain contexts).

Each instantiation C<A> represents a separate class.
Wolfgang Schreiner https://www.risc.jku.at 18/51

Class Templates

// Point.h

template<typename T> class Point { ... } // no member definitions inside

// member definitions outside of class declaration

template<typename T> Point<T>::Point(T a, T b): x(a), y(b) { }

template<typename T> T Point<T>::getX() { return x; }

template<typename T> Point<T> Point<T>::flip() { return Point(-x,-y); }

template<typename T> Point<T> Point<T>::copy(Point p)

{ return Point(p.x, p.y); }

Member definition C<T>::member outside class declaration.

Inside definition, C is a synonym for C<T>.

Unfortunately not for types of data members and return
types of member functions.

Member functions of class templates are defined in the template header.

Wolfgang Schreiner https://www.risc.jku.at 19/51

Default Arguments

A class template may provide default arguments for its parameters.

template<typename T=int, typename U=int>

class Tuple {

T x; U y;

public:

Tuple(T a, U b): x(a), y(b) { }

Tuple() { }

Tuple(Tuple t): x(t.x), y(t.y) { }

};

Tuple<double, double> t(3.14, 2.71);

Tuple<double> u(3.14, 2); // Tuple<double, int>

Tuple<> v(3, 2); // Tuple<int, int>

If the instantiation of a class template provides too few arguments, the
default arguments are used instead.

Wolfgang Schreiner https://www.risc.jku.at 20/51

Value Parameters

template<int N=100, typename T=int>

class Array {

protected:

T a[N];

public:

Array(T x = 0) { for (int i=0; i<N; i++) a[i] = x; }

virtual ~Array() { } // support subclasses with virtual functions

int length() { return N; }

T& operator[](int i) {

if (i < 0 || i >= N) exit(-1);

return a[i];

}

};

Array<50> a(-1); // Array<50,int>

a[1] = a[1] + 1;

Array<> b(-1); // Array<100,int>

b[1] = b[1]+a[1];

A class template may also have value parameters which may also receive
default values; concrete arguments must be compile-time constants.

Wolfgang Schreiner https://www.risc.jku.at 21/51

Specializing Class Templates

For special instantiations, alternative class definitions may be given.

template<typename T> class Container {

T* value;

public:

Container(T x) { value = new T; *value = x; }

};

template<> class Container<int> {

int value;

public:

Container(int x) { value = x; }

};

Tuple<int, int> t(3, 0);

Container<Tuple<int, int> > c(t);

Container<int> d(5);

A generic class may be augmented by special representations.

Wolfgang Schreiner https://www.risc.jku.at 22/51

Partial Specialization

Only some the template parameters may be specialized.

template<int N, typename T> class Array { ... }

template<typename T> class Array<1, T> {

protected:

T a; // no array but scalar variable

public:

Array(T x = 0): a(x) { }

virtual ~Array() { }

int length() { return 1; }

T& operator[](int i) {

if (i != 0) exit(-1);

return a;

}

};

Array<1, int> a(1);

a[0] = a[0]+1;

From a template, more special templates may be derived.
Wolfgang Schreiner https://www.risc.jku.at 23/51

Example: A Generic Sorting Function (V6)

template<typename T> class Comparator { public:

static bool isSorted(T a, T b) { return a <= b ; }

};

template<> class Comparator<char*> { public:

static bool isSorted(char *a, char *b) { return strcmp(a, b) <= 0; }

};

template<typename T> void sort(T a[], int n) {

for (int i=0; i<n-1; i++) {

for (int j=n-1; i<j; j--) {

if (!Comparator<T>::isSorted(a[j-1],a[j])) {

T b = a[j]; a[j] = a[j-1]; a[j-1] = b;

}

}

}

}

int a[100]; sort(a, 100);

char* b[100]; sort(b, 100);

Generic sorting with the comparison operation attached to the base type.
Wolfgang Schreiner https://www.risc.jku.at 24/51

Example: A Generic Sorting Function (V7)

template<T> class ReverseComparator { public:

static bool isSorted(T a, T b) { return !Comparator<T>::isSorted(a,b); }

};

template<typename T, class C=Comparator<T>> void sort(T a[], int n) {

for (int i=0; i<n-1; i++) {

for (int j=n-1; i<j; j--) {

if (!C::isSorted(a[j-1],a[j])) {

T b = a[j]; a[j] = a[j-1]; a[j-1] = b;

}

}

}

}

int a[100]; sort(a, 100);

char* b[100]; sort(b, 100);

int c[100]; sort<int, ReverseComparator<int>>(c, 100);

Generic sorting with the comparison operation attached to a class that
may be derived from the base type (see the standard library later).

Wolfgang Schreiner https://www.risc.jku.at 25/51

Example: A Generic Sorting Function (V8)

template<int N, typename T> class SortableArray: public Array<N, T> { public:

static bool isSorted(T a, T b) { return a <= b ; }

};

template<int N> class SortableArray<N, char *>: public Array<N,char*> { public:

static bool isSorted(char *a, char *b) { return strcmp(a, b) <= 0; }

};

template<int N, typename T> void sort(SortableArray<N, T>& a) {

for (int i=0; i<N-1; i++) {

for (int j=N-1; i<j; j--) {

if (!SortableArray<N, T>::isSorted(a[j-1],a[j])) {

T b = a[j]; a[j] = a[j-1]; a[j-1] = b;

}

}

}

}

SortableArray<100, int> a; sort(a);

SortableArray<100, char*> b; sort(b);

Generic sorting with the comparison operation attached to the array type.
Wolfgang Schreiner https://www.risc.jku.at 26/51

Example: A Generic Sorting Function (V9)

template<int N, typename T> class SortableArray2: public Array<N, T> { public:

virtual bool isSorted(int i, int j) { return this->a[i] <= this->a[j]; }

};

template<int N> class SortableArray2<N, char *>: public Array<N, char*> { public:

virtual bool isSorted(int i, int j) {return strcmp(this->a[i],this->a[j])<=0;}

};

template<int N, typename T> void sort(SortableArray2<N, T>& a) {

for (int i=0; i<N-1; i++) {

for (int j=N-1; i<j; j--) {

if (!a.isSorted(j-1,j)) {

T b = a[j]; a[j] = a[j-1]; a[j-1] = b;

}

}

}

}

SortableArray2<100, int> a; sort(a);

SortableArray2<100, char*> b; sort(b);

Generic sorting with the comparison operation attached to the array
object (i.e. operation is looked up at runtime, no inlining is possible).

Wolfgang Schreiner https://www.risc.jku.at 27/51

Example: A Generic Sorting Function (V9)

template<int N, typename T> class SortableArray2: public Array<N, T> { ... }

template<int N, typename T> void sort(SortableArray2<N, T> a) { ... }

template<int N, typename T>

class ReverseSortedArray: public SortableArray2<N, T> {

public:

virtual bool isSorted(int i, int j)

{ return !SortableArray2::isSorted(i, j); }

};

ReverseSortedArray<100, int> a; sort(a);

ReverseSortedArray<100, char*> b; sort(b);

By inheritance and overriding, arrays may be constructed with different
comparison operations attached to them.

Wolfgang Schreiner https://www.risc.jku.at 28/51

1. Function Templates

2. Class Templates

3. Advanced Use of Templates

4. Example: Generic Lists

Wolfgang Schreiner https://www.risc.jku.at 29/51

Member Templates

A template may be a member of a class.

template<typename T> class Variable {

T value;

public:

Variable(T x): value(x) { }

void set(T x) { value = x; }

template<typename U> void set(U x) { value = static_cast<T>(x); }

};

Variable<int> var(0);

var.set(1); // non-template function set

var.set<double>(1.5); // explicit: template function set<double>

var.set(2.5); // automatic: template function set<double>

By overloading, functions and function templates may have same names;
compiler gives precedence to non-template functions.

Wolfgang Schreiner https://www.risc.jku.at 30/51

Templates as Parameters

A template may receive class templates as parameters.

template<template<int, typename> class C, int N, typename T>

void fill(C<N, T> a, int start, int end, T x) {

for (int i=start; i<end; i++) a[i] = x;

}

Array<100, int> a;

fill(a, 0, 50, 1); // automatic: fill<Array, 100, int>

fill(a, 50, 100, 2); // automatic: fill<Array, 100, int>

Array<100, double> b;

fill(b, 0, 100, 1.5); // automatic: fill<Array, 100, double>

template<template<...> class C>

A template with a class template C as parameter.
C must be instantiated as specified by its parameter list <. . .>.

For function templates, the appropriate instantiations of the template
parameters can be typically determined automatically.

Wolfgang Schreiner https://www.risc.jku.at 31/51

Templates and Friends

class C { };

template<typename T> class U { friend class C; };

class D { friend class U<int>; };

class E { template<typename T> friend class U; };

template<typename T> class V { friend class U<T>; };

template<typename T> class W { template<typename T2> friend class U; };

Template instances can grant friendship/be granted friendship.

Class C is friend of every instance of template class U.
Class U<int> is friend of class D (but no other instance of U is).
Every instance of template class U is friend of class E.
For every type T, class U<T > is friend of class V<T >.
Every instance of template class U is friend of every instance of
template class W.

It is the individual instances that grant/receive friendship status.

Wolfgang Schreiner https://www.risc.jku.at 32/51

Templates and Type Names

Classes may also hold type definitions.

template<int N, typename T> class Array {

...

typedef T value_type;

}

template<class C>

typename C::value_type get(C a, int i) {

return a[i];

}

Array<100,int> arr0;

int val = get(arr0, 0); // automatic: get<Array<100,int> >

typename C ::member

Indicates that C ::member denotes a type (not a value).
Compiler needs to know this for correctly parsing the template.

Type names as class members are frequently used for “traits” (see later).

Wolfgang Schreiner https://www.risc.jku.at 33/51

Templates and Name Lookup

template<int N, typename T> class Array { ... protected: T a[N]; ... }

template<int N, typename T> class SortableArray2: public Array<N, T> {

public:

virtual bool isSorted(int i, int j)

{ return this->a[i] <= this->a[j]; } // wrong: "return a[i] < a[j]"

}

Dependent names depend on some template parameter.

Nondependent names: looked up in context of template declaration.
Name a is non-dependent.
return a[i] <= a[j]: name a is looked up in template context
(i.e. typically reported as “undeclared” by compiler).

Dependent names: looked up in context of instantiated template.
Name this is always dependent.
return this->a[i] <= this->a[j]: variable a is looked up in the
context of the instantiated class.

In templates, better refer to class members as this->member (this is
mandatory when referring to members of base classes).

Wolfgang Schreiner https://www.risc.jku.at 34/51

Template Metaprogramming

With templates, programs can be written that are executed by compiler.

template<int x, unsigned y>

struct ipower {

static const int value = x*ipower<x,y-1>::value;

};

template<int x>

struct ipower<x, 0> {

static const int value = 1;

};

int x = ipower<2,5>::value; // 2^5=32, computed by compiler

Attention: template metaprograms may take a long time and need not
even terminate (compiler might loop forever).

Wolfgang Schreiner https://www.risc.jku.at 35/51

Template Metaprogramming

struct empty {};

template<typename H, typename T> struct node {

typedef H head; typedef T tail; };

template<typename T, typename U> struct same {

static const bool result = false; };

template<typename T> struct same<T, T> {

static const bool result = true; };

template<typename T, typename L> struct member {

static const bool result =

same<T, typename L::head>::result ||

member<T, typename L::tail>::result; };

template<typename T> struct member<T, empty> {

static const bool result = false; };

typedef node<int, node<bool, node<char, empty> > > typelist;

bool haschar = member<char, typelist>::result; // true, computed by compiler

Lists of types that are processed at compile time.

Wolfgang Schreiner https://www.risc.jku.at 36/51

Compiling Templates

How do compilers handle the compilation of a template t?

Approach 1: Both declaration and definition in header file t.h.

Most compilers create separate instances for each compiled source;
linker ensures that final executable does not contain duplicates.
Some compilers maintain a repository of generated instances; this
repository is looked up before generating a new instance.

Approach 2: Only declaration in t.h, definition in source file t.cpp.

Some compilers locate the definition automatically from the name of
the template and create new instances from there (if required).

How to organize source code such that it works for all approaches?

Wolfgang Schreiner https://www.risc.jku.at 37/51

Compiling Templates: Configurations

// config.h

#ifndef CONFIG_H

#define CONFIG_H

...

// settings for gcc

#ifdef __GNUC__

#define NEED_TEMPLATE_DEFINITIONS

#endif

...

#endif

Wolfgang Schreiner https://www.risc.jku.at 38/51

Compiling Templates: Declarations

// point.h

#ifndef POINT_H

#define POINT_H

#include "config.h"

// template declaration, definitions only for inlining

template<typename T> class Point {

T x; T y;

public:

Point(T a, T b): x(a), y(b) { }

T getX() { return x; }

Point flip();

static Point copy(Point p);

};

#ifdef NEED_TEMPLATE_DEFINITIONS

#include "point.cpp";

#endif

#endif

Wolfgang Schreiner https://www.risc.jku.at 39/51

Compiling Templates: Definitions

// point.cpp

#ifndef POINT_CPP

#define POINT_CPP

#include "point.h"

// template definitions

template<typename T> Point<T> Point<T>::flip() {

return Point(-x,-y);

}

template<typename T> Point<T> Point<T>::copy(Point p) {

return Point(p.x, p.y);

}

#endif

// main.h

#include "point.h"

int main()

{

Point<int> p(10, 20);

...

}

Wolfgang Schreiner https://www.risc.jku.at 40/51

Alternative: Manual Instance Management

In every file with some instantiation of template Point:

#include "point.h"

extern template class Point<int>;

extern template class Point<double>;

... Point<int> ... Point<double> ...

Prevents creation of denoted instances in this object file.

In one file linked to the program:

#include "point.h"

template class Point<int>;

template class Point<double>;

...

Forces creation of denoted instances in this object file.

Faster compilation, smaller object files, but bigger effort.

Wolfgang Schreiner https://www.risc.jku.at 41/51

1. Function Templates

2. Class Templates

3. Advanced Use of Templates

4. Example: Generic Lists

Wolfgang Schreiner https://www.risc.jku.at 42/51

Example: Generic Lists

// empty list is created: ()

List<int> l; cout << l;

// 3 elements are inserted at positions 0,1,1: (1, 3, 2)

l.insert(0, 1).insert(1, 2).insert(1, 3); cout << l;

// element is removed and new one is inserted: (1, 4, 2)

l. remove(1).insert(1, 4); cout << l;

// element at position 1 is updated: (1, 2, 2)

l[1] = 2; cout << l;

// a copy of the list is created: (1, 2, 2)

List<int> r = l; cout << r;

// copy is updated, original is unchanged: (1, 3, 2) (1, 2, 2)

r[1] = r[1]+1; cout << r; cout << l;

// list is replaced: (1, 3, 2)

l = r; cout << l;

A list of values with flexible access and modification operations.
Wolfgang Schreiner https://www.risc.jku.at 43/51

Example: Generic Lists

// forward declarations

template<typename T> class List;

template<typename T> ostream& operator<<(ostream& out, List<T>& l);

// Node gives friend status to List and operator<<

template<typename T> class Node

{

T value;

Node* next;

public:

Node(T& v, Node* n): value(v), next(n) { }

friend class List<T>;

friend ostream& operator<< <T>(ostream& out, List <T> &l);

};

Class for representation of list nodes.

Wolfgang Schreiner https://www.risc.jku.at 44/51

Example: Generic Lists

template<typename T> class List

{

Node<T> *head; // nullptr or pointer to first node

int len; // number of nodes

void reset(); // set list to empty

void copy(List &l); // copy content of l to this list

public:

List(); // empty list

~List(); // discard all values of list

List(List& l); // copy values of l to this list

List& operator=(List& l); // assign values of l to this list

int length(); // number of values in list

T& operator[](int i); // reference to value at position i

List<T>& insert(int i, T value); // insert value at position i

List<T>& remove(int i); // remove value from position i

// give friend status to operator <<

friend ostream& operator<< <T>(ostream& out, List <T>& l);

};

The nodes of a list are never exposed and not shared with any other list.

Wolfgang Schreiner https://www.risc.jku.at 45/51

Example: Generic Lists

template<typename T> ostream& operator<<(ostream& out, List<T>& l)

{

Node<T> *node = l.head;

out << "(";

while (node != nullptr)

{

out << node->value;

node = node->next;

if (node != nullptr) out << ", ";

}

out << ")";

return out;

}

Printing requires access to list head and node fields.

Wolfgang Schreiner https://www.risc.jku.at 46/51

Example: Generic Lists

template<typename T> List<T>::List(): head(nullptr), len(0) { }

template<typename T> List<T>::~List() { reset(); }

template<typename T> List<T>::List(List& l) { copy(l); }

template<typename T> List<T>& List<T>::operator=(List& l) {

if (&l == this) return; reset(); copy(l); return l;

}

template<typename T> int List<T>::length() { return len; }

template<typename T> T& List<T>::operator[](int i) {

Node<T> *node = head;

for (int j=0; j<i; j++)

node = node->next;

return node->value;

}

The most fundamental list operations.

Wolfgang Schreiner https://www.risc.jku.at 47/51

Example: Generic Lists

template<typename T> List<T>& List<T>::insert(int i, T value)

{

Node<T> *prev = nullptr;

Node<T> *next = head;

for (int j=0; j<i; j++)

{

prev = next;

next = next->next;

}

Node<T> *node = new Node<T>(value, next);

if (prev == nullptr)

head = node;

else

prev->next = node;

len = len+1;

return *this;

}

Creating a new node and inserting it at the denoted position.

Wolfgang Schreiner https://www.risc.jku.at 48/51

Example: Generic Lists

template<typename T> List<T>& List<T>::remove(int i)

{

Node<T> *prev = nullptr;

Node<T> *next = head;

for (int j=0; j<i; j++)

{

prev = next;

next = next->next;

}

if (prev == nullptr)

head = next->next;

else

prev->next = next->next;

len = len-1;

delete next;

return *this;

}

Removing a node from the denoted position (deleting it from memory).

Wolfgang Schreiner https://www.risc.jku.at 49/51

Example: Generic Lists

template<typename T> void List<T>::reset()

{

Node<T> *node = head;

while (node != nullptr)

{

Node<T> *prev = node;

node = node->next;

delete prev;

}

head = nullptr;

len = 0;

}

Resetting a list to the original status (deleting all nodes).

Wolfgang Schreiner https://www.risc.jku.at 50/51

Example: Generic Lists

template<typename T> void List<T>::copy(List& l)

{

Node<T> *prev = nullptr;

int n = l.length();

Node<T> *node = l.head;

for (int i=0; i<n; i++)

{

Node<T> *node0 = new Node<T>(node->value, nullptr);

if (prev == nullptr)

head = node0;

else

prev->next = node0;

prev = node0;

node = node->next;

}

len = n;

}

Copying the nodes from another list (assuming this list is empty).

Wolfgang Schreiner https://www.risc.jku.at 51/51

